Some properties of the class of arithmetic functions
R. P. Pakshirajan (1963)
Annales Polonici Mathematici
Similarity:
R. P. Pakshirajan (1963)
Annales Polonici Mathematici
Similarity:
Angkana Sripayap, Pattira Ruengsinsub, Teerapat Srichan (2022)
Czechoslovak Mathematical Journal
Similarity:
Let and . Denote by the set of all integers whose canonical prime representation has all exponents being a multiple of or belonging to the arithmetic progression , . All integers in are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. ...
Antonio M. Oller-Marcén (2017)
Mathematica Bohemica
Similarity:
A homothetic arithmetic function of ratio is a function such that for every . Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of in terms of the period and the ratio of .
Liuying Wu (2024)
Czechoslovak Mathematical Journal
Similarity:
Let denote a positive integer with at most prime factors, counted according to multiplicity. For integers , such that , let denote the least in the arithmetic progression . It is proved that for sufficiently large , we have This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained
Watcharapon Pimsert, Teerapat Srichan, Pinthira Tangsupphathawat (2023)
Czechoslovak Mathematical Journal
Similarity:
We use the estimation of the number of integers such that belongs to an arithmetic progression to study the coprimality of integers in , , .
Melvyn B. Nathanson, Kevin O'Bryant (2015)
Acta Arithmetica
Similarity:
A geometric progression of length k and integer ratio is a set of numbers of the form for some positive real number a and integer r ≥ 2. For each integer k ≥ 3, a greedy algorithm is used to construct a strictly decreasing sequence of positive real numbers with a₁ = 1 such that the set contains no geometric progression of length k and integer ratio. Moreover, is a maximal subset of (0,1] that contains no geometric progression of length k and integer ratio. It is also proved that...
Taras O. Banakh, Dario Spirito, Sławomir Turek (2021)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The Golomb space is the set of positive integers endowed with the topology generated by the base consisting of arithmetic progressions with coprime . We prove that the Golomb space is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.
Bo Chen (2024)
Czechoslovak Mathematical Journal
Similarity:
Let be the integral part of a real number , and let be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum , which improves the recent result of J. Stucky (2022).
Taras Banakh, Vesko Valov
Similarity:
General position properties play a crucial role in geometric and infinite-dimensional topologies. Often such properties provide convenient tools for establishing various universality results. One of well-known general position properties is DDⁿ, the property of disjoint n-cells. Each Polish -space X possessing DDⁿ contains a topological copy of each n-dimensional compact metric space. This fact implies, in particular, the classical Lefschetz-Menger-Nöbeling-Pontryagin-Tolstova embedding...
Gérard Freixas Montplet (2009)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Let be an arithmetic ring of Krull dimension at most 1, and an -pointed stable curve of genus . Write . The invertible sheaf inherits a hermitian structure from the dual of the hyperbolic metric on the Riemann surface . In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of . The theorem is applied to modular curves , or , prime, with sections given by the cusps. We show , with when . Here is the Selberg...
Przemysław Mazur (2015)
Acta Arithmetica
Similarity:
We prove that every set A ⊂ ℤ satisfying for t and δ in suitable ranges must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset A ⊂ ℕ satisfies |ℕ∖(A+A)| ≥ k; specifically, we show that .