Poincaré Inequalities and Moment Maps

Bo’az Klartag[1]

  • [1] School of Mathematical Sciences, Tel-Aviv University, Tel Aviv 69978, Israel

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 1, page 1-41
  • ISSN: 0240-2963

Abstract

top
We discuss a method for obtaining Poincaré-type inequalities on arbitrary convex bodies in n . Our technique involves a dual version of Bochner’s formula and a certain moment map, and it also applies to some non-convex sets. In particular, we generalize the central limit theorem for convex bodies to a class of non-convex domains, including the unit balls of p -spaces in n for 0 < p < 1 .

How to cite

top

Klartag, Bo’az. "Poincaré Inequalities and Moment Maps." Annales de la faculté des sciences de Toulouse Mathématiques 22.1 (2013): 1-41. <http://eudml.org/doc/275324>.

@article{Klartag2013,
abstract = {We discuss a method for obtaining Poincaré-type inequalities on arbitrary convex bodies in $\mathbb\{R\}^n$. Our technique involves a dual version of Bochner’s formula and a certain moment map, and it also applies to some non-convex sets. In particular, we generalize the central limit theorem for convex bodies to a class of non-convex domains, including the unit balls of $\ell _p$-spaces in $\mathbb\{R\}^n$ for $0 &lt; p &lt; 1$.},
affiliation = {School of Mathematical Sciences, Tel-Aviv University, Tel Aviv 69978, Israel},
author = {Klartag, Bo’az},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Poincaré inequalities; dual Bochner formula; moment map; log-concave functions; convex bodies; norm; regularity at infinity},
language = {eng},
month = {6},
number = {1},
pages = {1-41},
publisher = {Université Paul Sabatier, Toulouse},
title = {Poincaré Inequalities and Moment Maps},
url = {http://eudml.org/doc/275324},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Klartag, Bo’az
TI - Poincaré Inequalities and Moment Maps
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 1
SP - 1
EP - 41
AB - We discuss a method for obtaining Poincaré-type inequalities on arbitrary convex bodies in $\mathbb{R}^n$. Our technique involves a dual version of Bochner’s formula and a certain moment map, and it also applies to some non-convex sets. In particular, we generalize the central limit theorem for convex bodies to a class of non-convex domains, including the unit balls of $\ell _p$-spaces in $\mathbb{R}^n$ for $0 &lt; p &lt; 1$.
LA - eng
KW - Poincaré inequalities; dual Bochner formula; moment map; log-concave functions; convex bodies; norm; regularity at infinity
UR - http://eudml.org/doc/275324
ER -

References

top
  1. Abreu (M.).— Kähler geometry of toric manifolds in symplectic coordinates. Symplectic and contact topology: interactions and perspectives. Fields Inst. Commun., 35, Amer. Math. Soc., Providence, RI, p. 1-24 (2003). Zbl1044.53051MR1969265
  2. Abreu (M.).— Kähler metrics on toric orbifolds. J. Differential Geom., 58, no. 1, p. 151-187 (2001). Zbl1035.53055MR1895351
  3. Anttila (M.), Ball (K.), Perissinaki (I.).— The central limit problem for convex bodies. Trans. Amer. Math. Soc., 355, no. 12, p. 4723-4735 (2003). Zbl1033.52003MR1997580
  4. Avkhadiev (F.), Wirths (K.-J.).— Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM Z. Angew. Math. Mech. 87, no. 8-9, p. 632-642 (2007). Zbl1145.26005MR2354734
  5. Bakry (D.), Émery (M.).— Diffusions hypercontractives (French). Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, p. 177-206 (1985). Zbl0561.60080MR889476
  6. Barthe (F.), Cordero-Erausquin (D.).— Invariances in variance estimates, Proc. London Math. Soc. 106, (2013) p. 33-64. 
  7. Bobkov (S. G.).— On concentration of distributions of random weighted sums. Ann. Prob., 31, no. 1, p. 195-215 (2003). Zbl1015.60019MR1959791
  8. Brascamp (H. J.), Lieb (E. H.).— On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal., 22, no. 4, p. 366-389 (1976). Zbl0334.26009MR450480
  9. Brezis (H.).— Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. Zbl1220.46002MR2759829
  10. Brezis (H.), Marcus (M.).— Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. 25, p. 217-237 (1997). Zbl1011.46027MR1655516
  11. Cannas da Silva (A.).— Lectures on Symplectic Geometry. Lecture Notes in Math., 1764, Springer-Verlag (2008). Zbl1016.53001
  12. Chiang (Y.-J.).— Harmonic Maps of V-Manifolds. Ann. Global Anal. Geom., Vol. 8, No. 3, p. 315-344 (1990). Zbl0679.58014MR1089240
  13. Diaconis (P.), Freedman (D.).— Asymptotics of graphical projection pursuit. Ann. Statist., 12, no. 3, p. 793-815 (1984). Zbl0559.62002MR751274
  14. Donaldson (S.).— Kähler geometry on toric manifolds, and some other manifolds with large symmetry. Handbook of geometric analysis. Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA, p. 29-75 (2008). Zbl1161.53066MR2483362
  15. Eldan (R.), Klartag (B.).— Approximately gaussian marginals and the hyperplane conjecture. Proc. of a workshop on “Concentration, Functional Inequalities and Isoperimetry”, Contermporary Math., 545, Amer. Math. Soc., p. 55-68 (2011). Zbl1235.52012MR2858465
  16. Escobar (J.).— Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate. Comm. Pure Appl. Math., 43, no. 7, p. 857-883 (1990). Zbl0713.53024MR1072395
  17. Fleury (B.).— Inégalités de concentration pour les corps convexes. Thèse de Doctorat, Université Paris 6 (2009). 
  18. Folland (G. B.).— Introduction to Partial Differential Equations. Mathematical Notes, Princeton University Press, Princeton, NJ (1976). Zbl0841.35001MR599578
  19. Gilbarg (D.), Trudinger (N.).— Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Zbl1042.35002MR1814364
  20. Gromov (M.).— Convex sets and Kähler manifolds. Advances in differential geometry and topology, World Sci. Publ., Teaneck, NJ, p. 1-38 (1990). Zbl0770.53042MR1095529
  21. Guillemin (V.).— Kähler structures on toric varieties. J. Diff. Geom., 40, p. 285-309 (1994). Zbl0813.53042MR1293656
  22. Klartag (B.).— A central limit theorem for convex sets. Invent. Math. 168, no. 1, p. 91-131 (2007). Zbl1144.60021MR2285748
  23. Klartag (B.).— A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Related Fields 145, no. 1-2, p. 1-33 (2009). Zbl1171.60322MR2520120
  24. Klartag (B.).— High-dimensional distributions with convexity properties. Proc. of the Fifth Euro. Congress of Math., Amsterdam, July 2008. Eur. Math. Soc. publishing house, p. 401-417 (2010). Zbl1202.46011MR2648334
  25. Kolesnikov (A.).— Hessian metrics and optimal transportation of log-concave measures. Preprint. Available under http://arxiv.org/abs/1201.2342 
  26. Müller (C.).— Spherical harmonics. Lecture Notes in Math., 17, Springer-Verlag, Berlin-New York (1966). Zbl0138.05101MR199449
  27. Petersen (P.).— Riemannian geometry. Second edition. Graduate Texts in Mathematics, 171. Springer, New York (2006). Zbl1220.53002MR2243772
  28. Sudakov (V. N.).— Typical distributions of linear functionals in finite-dimensional spaces of high-dimension. (Russian) Dokl. Akad. Nauk. SSSR, 243, no. 6, (1978), 1402–1405. English translation in Soviet Math. Dokl., 19, p. 1578-1582 (1978). Zbl0416.60005MR517198
  29. Tian (G.).— Canonical metrics in Kähler geometry. Notes taken by Meike Akveld. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2000). Zbl0978.53002MR1787650
  30. Villani (C.).— Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI (2003). Zbl1106.90001MR1964483
  31. von Weizsäcker (H.).— Sudakov’s typical marginals, random linear functionals and a conditional central limit theorem. Probab. Theory and Related Fields, 107, no. 3, p. 313-324 (1997). Zbl0868.60009MR1440135

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.