Poincaré Inequalities and Moment Maps
- [1] School of Mathematical Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 1, page 1-41
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topKlartag, Bo’az. "Poincaré Inequalities and Moment Maps." Annales de la faculté des sciences de Toulouse Mathématiques 22.1 (2013): 1-41. <http://eudml.org/doc/275324>.
@article{Klartag2013,
abstract = {We discuss a method for obtaining Poincaré-type inequalities on arbitrary convex bodies in $\mathbb\{R\}^n$. Our technique involves a dual version of Bochner’s formula and a certain moment map, and it also applies to some non-convex sets. In particular, we generalize the central limit theorem for convex bodies to a class of non-convex domains, including the unit balls of $\ell _p$-spaces in $\mathbb\{R\}^n$ for $0 < p < 1$.},
affiliation = {School of Mathematical Sciences, Tel-Aviv University, Tel Aviv 69978, Israel},
author = {Klartag, Bo’az},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Poincaré inequalities; dual Bochner formula; moment map; log-concave functions; convex bodies; norm; regularity at infinity},
language = {eng},
month = {6},
number = {1},
pages = {1-41},
publisher = {Université Paul Sabatier, Toulouse},
title = {Poincaré Inequalities and Moment Maps},
url = {http://eudml.org/doc/275324},
volume = {22},
year = {2013},
}
TY - JOUR
AU - Klartag, Bo’az
TI - Poincaré Inequalities and Moment Maps
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 1
SP - 1
EP - 41
AB - We discuss a method for obtaining Poincaré-type inequalities on arbitrary convex bodies in $\mathbb{R}^n$. Our technique involves a dual version of Bochner’s formula and a certain moment map, and it also applies to some non-convex sets. In particular, we generalize the central limit theorem for convex bodies to a class of non-convex domains, including the unit balls of $\ell _p$-spaces in $\mathbb{R}^n$ for $0 < p < 1$.
LA - eng
KW - Poincaré inequalities; dual Bochner formula; moment map; log-concave functions; convex bodies; norm; regularity at infinity
UR - http://eudml.org/doc/275324
ER -
References
top- Abreu (M.).— Kähler geometry of toric manifolds in symplectic coordinates. Symplectic and contact topology: interactions and perspectives. Fields Inst. Commun., 35, Amer. Math. Soc., Providence, RI, p. 1-24 (2003). Zbl1044.53051MR1969265
- Abreu (M.).— Kähler metrics on toric orbifolds. J. Differential Geom., 58, no. 1, p. 151-187 (2001). Zbl1035.53055MR1895351
- Anttila (M.), Ball (K.), Perissinaki (I.).— The central limit problem for convex bodies. Trans. Amer. Math. Soc., 355, no. 12, p. 4723-4735 (2003). Zbl1033.52003MR1997580
- Avkhadiev (F.), Wirths (K.-J.).— Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM Z. Angew. Math. Mech. 87, no. 8-9, p. 632-642 (2007). Zbl1145.26005MR2354734
- Bakry (D.), Émery (M.).— Diffusions hypercontractives (French). Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, p. 177-206 (1985). Zbl0561.60080MR889476
- Barthe (F.), Cordero-Erausquin (D.).— Invariances in variance estimates, Proc. London Math. Soc. 106, (2013) p. 33-64.
- Bobkov (S. G.).— On concentration of distributions of random weighted sums. Ann. Prob., 31, no. 1, p. 195-215 (2003). Zbl1015.60019MR1959791
- Brascamp (H. J.), Lieb (E. H.).— On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal., 22, no. 4, p. 366-389 (1976). Zbl0334.26009MR450480
- Brezis (H.).— Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. Zbl1220.46002MR2759829
- Brezis (H.), Marcus (M.).— Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. 25, p. 217-237 (1997). Zbl1011.46027MR1655516
- Cannas da Silva (A.).— Lectures on Symplectic Geometry. Lecture Notes in Math., 1764, Springer-Verlag (2008). Zbl1016.53001
- Chiang (Y.-J.).— Harmonic Maps of V-Manifolds. Ann. Global Anal. Geom., Vol. 8, No. 3, p. 315-344 (1990). Zbl0679.58014MR1089240
- Diaconis (P.), Freedman (D.).— Asymptotics of graphical projection pursuit. Ann. Statist., 12, no. 3, p. 793-815 (1984). Zbl0559.62002MR751274
- Donaldson (S.).— Kähler geometry on toric manifolds, and some other manifolds with large symmetry. Handbook of geometric analysis. Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA, p. 29-75 (2008). Zbl1161.53066MR2483362
- Eldan (R.), Klartag (B.).— Approximately gaussian marginals and the hyperplane conjecture. Proc. of a workshop on “Concentration, Functional Inequalities and Isoperimetry”, Contermporary Math., 545, Amer. Math. Soc., p. 55-68 (2011). Zbl1235.52012MR2858465
- Escobar (J.).— Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate. Comm. Pure Appl. Math., 43, no. 7, p. 857-883 (1990). Zbl0713.53024MR1072395
- Fleury (B.).— Inégalités de concentration pour les corps convexes. Thèse de Doctorat, Université Paris 6 (2009).
- Folland (G. B.).— Introduction to Partial Differential Equations. Mathematical Notes, Princeton University Press, Princeton, NJ (1976). Zbl0841.35001MR599578
- Gilbarg (D.), Trudinger (N.).— Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Zbl1042.35002MR1814364
- Gromov (M.).— Convex sets and Kähler manifolds. Advances in differential geometry and topology, World Sci. Publ., Teaneck, NJ, p. 1-38 (1990). Zbl0770.53042MR1095529
- Guillemin (V.).— Kähler structures on toric varieties. J. Diff. Geom., 40, p. 285-309 (1994). Zbl0813.53042MR1293656
- Klartag (B.).— A central limit theorem for convex sets. Invent. Math. 168, no. 1, p. 91-131 (2007). Zbl1144.60021MR2285748
- Klartag (B.).— A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Related Fields 145, no. 1-2, p. 1-33 (2009). Zbl1171.60322MR2520120
- Klartag (B.).— High-dimensional distributions with convexity properties. Proc. of the Fifth Euro. Congress of Math., Amsterdam, July 2008. Eur. Math. Soc. publishing house, p. 401-417 (2010). Zbl1202.46011MR2648334
- Kolesnikov (A.).— Hessian metrics and optimal transportation of log-concave measures. Preprint. Available under http://arxiv.org/abs/1201.2342
- Müller (C.).— Spherical harmonics. Lecture Notes in Math., 17, Springer-Verlag, Berlin-New York (1966). Zbl0138.05101MR199449
- Petersen (P.).— Riemannian geometry. Second edition. Graduate Texts in Mathematics, 171. Springer, New York (2006). Zbl1220.53002MR2243772
- Sudakov (V. N.).— Typical distributions of linear functionals in finite-dimensional spaces of high-dimension. (Russian) Dokl. Akad. Nauk. SSSR, 243, no. 6, (1978), 1402–1405. English translation in Soviet Math. Dokl., 19, p. 1578-1582 (1978). Zbl0416.60005MR517198
- Tian (G.).— Canonical metrics in Kähler geometry. Notes taken by Meike Akveld. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2000). Zbl0978.53002MR1787650
- Villani (C.).— Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI (2003). Zbl1106.90001MR1964483
- von Weizsäcker (H.).— Sudakov’s typical marginals, random linear functionals and a conditional central limit theorem. Probab. Theory and Related Fields, 107, no. 3, p. 313-324 (1997). Zbl0868.60009MR1440135
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.