Curvature and Flow in Digital Space

Atsushi Imiya[1]

  • [1] Supercomputing Laboratory Institute of Management and Information Technologies Chiba University Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Chiba Japan

Actes des rencontres du CIRM (2013)

  • Volume: 3, Issue: 1, page 183-194
  • ISSN: 2105-0597

Abstract

top
We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.

How to cite

top

Imiya, Atsushi. "Curvature and Flow in Digital Space." Actes des rencontres du CIRM 3.1 (2013): 183-194. <http://eudml.org/doc/275328>.

@article{Imiya2013,
abstract = {We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.},
affiliation = {Supercomputing Laboratory Institute of Management and Information Technologies Chiba University Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Chiba Japan},
author = {Imiya, Atsushi},
journal = {Actes des rencontres du CIRM},
keywords = {Digital Space; Surgery; Curvature flow; Topology},
language = {eng},
month = {11},
number = {1},
pages = {183-194},
publisher = {CIRM},
title = {Curvature and Flow in Digital Space},
url = {http://eudml.org/doc/275328},
volume = {3},
year = {2013},
}

TY - JOUR
AU - Imiya, Atsushi
TI - Curvature and Flow in Digital Space
JO - Actes des rencontres du CIRM
DA - 2013/11//
PB - CIRM
VL - 3
IS - 1
SP - 183
EP - 194
AB - We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.
LA - eng
KW - Digital Space; Surgery; Curvature flow; Topology
UR - http://eudml.org/doc/275328
ER -

References

top
  1. Marshall Bern, David Eppstein, Mesh generation and optimal triangulation, Computing in Euclidean Geometry, 2nd Edition (1995), 47-123 
  2. Hanspeter Bieri, Walter Nef, A recursive sweep-plane algorithm, determining all cells of a finite division of R d , Computing 28 (1982), 189-198 Zbl0467.51019
  3. Hanspeter Bieri, Walter Nef, A sweep-plane algorithm for computing the volume of polyhedra represented in Boolean form, Linear Algebra and Its Applications 52/53 (1983), 69-97 Zbl0533.51008
  4. Hanspeter Bieri, Walter Nef, Algorithms for the Euler characteristic and related additive functionals of digital objects, CVGIP 28 (1984), 166-175 Zbl0599.68052
  5. Hanspeter Bieri, Walter Nef, A sweep-plane algorithm for computing the Euler-characteristic of polyhedra represented in Boolean form, Computing 34 (1985), 287-304 Zbl0563.52014
  6. Alexander I. Bobenko, Yuri B. Suris, Discrete Differential Geometry: Integrable Structure, (2008), American Mathematical Society Zbl1158.53001
  7. Alfred M. Bruckstein, Guillermo Shapiro, Doron Shaked, Evolution of planar polygons, J. Pattern Recognition and Artificial Intelligence 9 (1995), 991-1014 
  8. Bastien Chopard, Michel Droz, Cellular Automata Modeling of Physical Systems, (1998), Cambridge University Press, Cambridge Zbl0973.82033
  9. Nira Dyn, David Levinand, Samuel Rippa, Data dependent triangulations for piecewise linear interpolation, IMA J. Numerical Analysis 10 (1990), 137-154 Zbl0699.65004
  10. Gerhard Huisken, Flow by mean curvature of convex surface into sphere, J. Differential Geometry 20 (1984), 237-266 Zbl0556.53001
  11. Atsushi Imiya, Geometry of three-dimensional neighbourhood and its applications (in Japanese), Trans. of Information Processing Society of Japan 34 (1993), 2153-2164 
  12. Yukiko Kenmochi, Atsushi Imiya, Deformation of discrete object surfaces, Lecture Notes in Computer Science 1296 (1997), 146-153 Zbl1254.68307
  13. Ron Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, (2007), Springer, Heidelberg Zbl1049.68145
  14. Reinhard Klette, Azriel Rosenfeld, Digital Geometry: Geometric Methods for Digital Picture Analysis, (2004), Morgan Kaufmann Zbl1064.68090
  15. C.-N Lee, T. Poston, Azriel Rosenfeld, Holes and genus of 2D and 3D digital images, CVGIP 55 (1993), 20-47 
  16. Douglas Lind, Brian Marcus, An Introduction to Symbolic Dynamics and Coding, (1995), Cambridge University Press, Cambridge Zbl1106.37301
  17. Tony Lindeberg, Scale-Space Theory, (1994), Kluwer Academic Publishers, Dordrecht Zbl0812.68040
  18. Tony Lindeberg, Generalized Axiomatic Scale-Space Theory, Advances in Imaging and Electron Physics 178 (2013), 1-96 Zbl1312.68202
  19. Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, (1992), John Wiley& Sons, Chichester Zbl0877.52010
  20. Samuel Rippa, Minimal roughness property of the Delaunay triangulation, Computer Aided Geometric Design 7 (1990), 489-497 Zbl0714.65009
  21. Tomoya Sakai, Masaki Narita, Takuto Komazaki, Haruhiko Nishiguchi, Atsushi Imiya, Image Hierarchy in Gaussian Scale Space, Advances in Imaging and Electron Physics 165 (2011), 175-263 
  22. Guillermo Sapiro, Geometric Partial Differential Equations and Image Analysis, (2001), Cambridge University Press, Cambridge Zbl0968.35001
  23. James A. Sethian, Level Set Methods: Evolving Interfaces in Geometry Fluid Mechanics, Computer Vision, and Material Science, (1996), Cambridge University Press, Cambridge Zbl0859.76004
  24. Junichiro Toriwaki, Digital Image Processing for Image Understanding, Vols.1 and 2 (in Japanese), (1988), Syokodo, Tokyo Zbl1191.68798
  25. Junichiro Toriwaki, Sigeki Yokoi, T. Yonekura, T. Fukumura, Topological properties and topological preserving transformation of a three-dimensional binary picture, Proc. of the 6th ICPR (1982), 414-419 
  26. Junichiro Toriwaki, Hiroyuki Yoshida, Fundamentals of Three-dimensional Digital Image Processing, (2009), Springer, Heidelberg Zbl1191.68798
  27. Andrea Toselli, Olof Widlund, Domain Decomposition Methods - Algorithms and Theory, (2005), Springer, Heidelberg Zbl1069.65138
  28. Richard S. Varge, Matrix Iterative Analysis, 2nd rev. and exp. ed., (2000), Springer, Heidelberg 
  29. Joachim Weickert, Anisotropic Diffusion in Image Processing, ECMI Series, (1998), Teubner-Verlag, Stuttgart Zbl0886.68131
  30. Stephan Wolfram, A New Kind of Science, (2002), Wolfram Media, Champaign Zbl1022.68084
  31. T. Yonekura, Junichiro Toriwaki, T. Fukumura, Sigeki Yokoi, On connectivity and the Euler number of three-dimensional digitized binary picture, Trans. of IECE Japan E63 (1980), 815-816 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.