Snakes and articulated arms in an Hilbert space

Fernand Pelletier; Rebhia Saffidine

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 3, page 525-557
  • ISSN: 0240-2963

Abstract

top
The purpose of this paper is to give an illustration of results on integrability of distributions and orbits of vector fields on Banach manifolds obtained in [5] and [4]. Using arguments and results of these papers, in the context of a separable Hilbert space, we give a generalization of a Theorem of accessibility contained in [3] and [6] for articulated arms and snakes in a finite dimensional Hilbert space.

How to cite

top

Pelletier, Fernand, and Saffidine, Rebhia. "Snakes and articulated arms in an Hilbert space." Annales de la faculté des sciences de Toulouse Mathématiques 22.3 (2013): 525-557. <http://eudml.org/doc/275330>.

@article{Pelletier2013,
abstract = {The purpose of this paper is to give an illustration of results on integrability of distributions and orbits of vector fields on Banach manifolds obtained in [5] and [4]. Using arguments and results of these papers, in the context of a separable Hilbert space, we give a generalization of a Theorem of accessibility contained in [3] and [6] for articulated arms and snakes in a finite dimensional Hilbert space.},
author = {Pelletier, Fernand, Saffidine, Rebhia},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {snakes; articulated arms; curves in Hilbert spaces; infinite-dimensional distributions; integrability of distributions},
language = {eng},
month = {6},
number = {3},
pages = {525-557},
publisher = {Université Paul Sabatier, Toulouse},
title = {Snakes and articulated arms in an Hilbert space},
url = {http://eudml.org/doc/275330},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Pelletier, Fernand
AU - Saffidine, Rebhia
TI - Snakes and articulated arms in an Hilbert space
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 3
SP - 525
EP - 557
AB - The purpose of this paper is to give an illustration of results on integrability of distributions and orbits of vector fields on Banach manifolds obtained in [5] and [4]. Using arguments and results of these papers, in the context of a separable Hilbert space, we give a generalization of a Theorem of accessibility contained in [3] and [6] for articulated arms and snakes in a finite dimensional Hilbert space.
LA - eng
KW - snakes; articulated arms; curves in Hilbert spaces; infinite-dimensional distributions; integrability of distributions
UR - http://eudml.org/doc/275330
ER -

References

top
  1. Cabau (P.), Pelletier (F.).— Almost Lie algebroid structure on an anchored Banach bundle, Journal of Geometry and Physics Vol 62, p. 2147-2169 (2012). Zbl1262.53077MR2964651
  2. Dieudonné (J.).— Fondements de l’analyse moderne, Cahiers scientifiques Fasc XXVII, Gauthier-Villars, Paris (1967). Zbl0114.26602MR161945
  3. Hausmann (J.-C.).— Contrôle des bras articulés et transformations de Moëbus, Enseignement Mathématique, t. 51, p. 87-115 (2005). Zbl1171.70303MR2154622
  4. Lathuille (A.), Pelletier (F.).— On Sussmann theorem for orbits of set of vector fields on Banach manifolds, Bulletin des Sciences Mathématiques Vol 136, p. 579-616 (2012). Zbl1252.58003MR2944371
  5. Pelletier (F.).— Integrability of weak distributions on Banach manifolds, Indagationes Mathematicae 23, p. 214-242 (2012). Zbl1286.46087MR2948622
  6. Rodriguez (E.).— L’algorithme du charmeur de serpents, PhD Thesis, University of Geneva, http://www.unige.ch/cyberdocuments/theses2006/RodriguezE/these.pdf. 
  7. Sussmann (H.-J.).— Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., vol 80, p. 171-188 (1973). Zbl0274.58002MR321133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.