Introduction to the basics of Heegaard Floer homology
- [1] Mathematisches Institut der LMU München, Theresienstrasse 39, 80333 München
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 2, page 269-336
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSahamie, Bijan. "Introduction to the basics of Heegaard Floer homology." Annales de la faculté des sciences de Toulouse Mathématiques 22.2 (2013): 269-336. <http://eudml.org/doc/275340>.
@article{Sahamie2013,
abstract = {This paper provides an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. The exposition is designed to be comprehensible to people without any prior knowledge of the subject.},
affiliation = {Mathematisches Institut der LMU München, Theresienstrasse 39, 80333 München},
author = {Sahamie, Bijan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Heegaard Floer homology; hat theory; contact geometric invariants},
language = {eng},
month = {6},
number = {2},
pages = {269-336},
publisher = {Université Paul Sabatier, Toulouse},
title = {Introduction to the basics of Heegaard Floer homology},
url = {http://eudml.org/doc/275340},
volume = {22},
year = {2013},
}
TY - JOUR
AU - Sahamie, Bijan
TI - Introduction to the basics of Heegaard Floer homology
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 2
SP - 269
EP - 336
AB - This paper provides an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. The exposition is designed to be comprehensible to people without any prior knowledge of the subject.
LA - eng
KW - Heegaard Floer homology; hat theory; contact geometric invariants
UR - http://eudml.org/doc/275340
ER -
References
top- Bredon (G. E.).— Geometry and Topology, Graduate Texts in Mathematics 139, Springer-Verlag (1993). Zbl0791.55001MR1224675
- Ding (F.) and Geiges (H.).— Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol. 1, p. 153-172 (2001). Zbl0974.53061MR1823497
- Ding (F.) and Geiges (H.).— A Legendrian surgery presentation of contact -manifolds, Math. Proc. Cambridge Philos. Soc. 136, p. 583-598 (2004). Zbl1069.57015MR2055048
- Eliashberg (Y.).— Topological characterization of Stein manifolds of dimension , Internat. J. Math. 1, p. 29-46. Zbl0699.58002MR1044658
- Etnyre (J. B.).— Lectures on open-book decompositions and contact structures, Amer. Math. Soc. 5, p. 103-142, (Proceedings of the Clay Mathematics Summer School) (2006). Zbl1108.53050MR2249250
- Geiges (H.).— An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics 109, Cambridge University Press (2008). Zbl1153.53002MR2397738
- Gompf (R. E.) and Stipsicz (A. I.).— -Manifolds and Kirby Calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999). Zbl0933.57020MR1707327
- Honda (K.), Kazez (W. H.), and Matić (G.).— On the contact class in Heegaard Floer homology, J. Diff. Geom. 83(2), p. 289-311 (2009). Zbl1186.53098MR2577470
- Lipshitz (R.), Ozsváth (P.) and Thurston (D.).— Bordered Heegaard Floer homology: Invariance and pairing, arXiv:0810.0687.
- Lisca (P.), Ozsváth (P.), Stipsicz (A. I.) and Szabó (Z.).— Heegaard Floer invariants of Legendrian knots in contact three-manifolds, J. Eur. Math. Soc (JEMS) 11(6), p. 1307-1363 (2009). Zbl1232.57017MR2557137
- McDuff (D.) and Salamon (D.).— -Holomorphic Curves and Symplectic Topology, Colloquium Publications 52, American Mathematical Society (2004). Zbl1064.53051MR2045629
- Juhasz (A.).— Holomorphic disks and sutured manifolds, Algebr. Geom. Topol. 6, p. 1429-1457 (2006). Zbl1129.57039MR2253454
- Ozsváth (P.) and Stipsicz (A. I.).— Contact surgeries and the transverse invariant in knot Floer homology, J. Inst. Math. Jussieu bf 9(3) (2010), 601-632. Zbl1204.57011MR2650809
- Ozsváth (P.) and Szabó (Z.).— Holomorphic disks and knot invariants, Adv. Math. 186(1), p. 58-116 (2004). Zbl1062.57019MR2065507
- Ozsváth (P.) and Szabó (Z.).— Heegaard Floer homologies and contact structures, Duke Math. J. 129(1), p. 39-61 (2005). Zbl1083.57042MR2153455
- Ozsváth (P.) and Szabó (Z.).— Heegaard diagrams and holomorphic disks, Diff. faces of Geom., Int. Math. Series p. 301-348. Zbl1091.57010MR2102999
- Ozsváth (P.) and Szabó (Z.).— Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159(3), p. 1027-1158 (2004). Zbl1073.57009MR2113019
- Ozsváth (P.) and Szabó (Z.).— Holomorphic disks and three-manifold invariants: Properties and applications, Ann. of Math. 159(3), p. 1159-1245 (2004). Zbl1081.57013MR2113020
- Ozsváth (P.) and Szabó (Z.).— Holomorphic triangles and invariants of smooth four-manifolds, Adv. Math. 202(2), p. 326-400 (2006). Zbl1099.53058MR2222356
- Ozsváth (P.) and Szabó (Z.).— On the Heegaard Floer homology of branched double-covers, Adv. Math. 194, p. 1-33 (2005). Zbl1076.57013MR2141852
- Ozsváth (P.) and Szabó (Z.).— Introduction to Heegaard Floer theory, Clay Math. Proc. 5, p. 3-28 (2006). Zbl1107.57022
- Ozsváth (P.) and Szabó (Z.).— Lectures on Heegaard Floer homology, Clay Math. Proc. 5, p. 29-70 (2006). Zbl1105.57029MR2249248
- Ozsváth (P.) and Szabó (Z.).— Heegaard diagrams and holomorphic disks, Different faces of geometry p. 301-348. Zbl1091.57010MR2102999
- Ozsváth (P.) and Szabó (Z.).— On the skein exact sequence for knot Floer homology, arXiv:0707.1165.
- Ozbagci (B.) and Stipsicz (A. I.).— Surgery on Contact -Manifolds and Stein Surfaces, Bolyai Society Mathematical Studies 13, Springer-Verlag (2004). Zbl1067.57024MR2114165
- Sahamie (B.).— Dehn twists in Heegaard Floer homology, Algebr. Geom. Topol. 10, p. 465-524 (2010). Zbl1209.57017MR2602843
- Sarkar (S.) and Wang (J.).— An algorithm for computing some Heegaard Floer homologies, Ann. of Math., vol. 171 (2), p. 1213-1236 (2010). Zbl1228.57017MR2630063
- Turaev (V.).— Torsion invariants of -structures on -manifolds, Math. Research Letters 6, p. 679-695 (1997). Zbl0891.57019MR1484699
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.