Introduction to the basics of Heegaard Floer homology

Bijan Sahamie[1]

  • [1] Mathematisches Institut der LMU München, Theresienstrasse 39, 80333 München

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 2, page 269-336
  • ISSN: 0240-2963

Abstract

top
This paper provides an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. The exposition is designed to be comprehensible to people without any prior knowledge of the subject.

How to cite

top

Sahamie, Bijan. "Introduction to the basics of Heegaard Floer homology." Annales de la faculté des sciences de Toulouse Mathématiques 22.2 (2013): 269-336. <http://eudml.org/doc/275340>.

@article{Sahamie2013,
abstract = {This paper provides an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. The exposition is designed to be comprehensible to people without any prior knowledge of the subject.},
affiliation = {Mathematisches Institut der LMU München, Theresienstrasse 39, 80333 München},
author = {Sahamie, Bijan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Heegaard Floer homology; hat theory; contact geometric invariants},
language = {eng},
month = {6},
number = {2},
pages = {269-336},
publisher = {Université Paul Sabatier, Toulouse},
title = {Introduction to the basics of Heegaard Floer homology},
url = {http://eudml.org/doc/275340},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Sahamie, Bijan
TI - Introduction to the basics of Heegaard Floer homology
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 2
SP - 269
EP - 336
AB - This paper provides an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. The exposition is designed to be comprehensible to people without any prior knowledge of the subject.
LA - eng
KW - Heegaard Floer homology; hat theory; contact geometric invariants
UR - http://eudml.org/doc/275340
ER -

References

top
  1. Bredon (G. E.).— Geometry and Topology, Graduate Texts in Mathematics 139, Springer-Verlag (1993). Zbl0791.55001MR1224675
  2. Ding (F.) and Geiges (H.).— Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol. 1, p. 153-172 (2001). Zbl0974.53061MR1823497
  3. Ding (F.) and Geiges (H.).— A Legendrian surgery presentation of contact 3 -manifolds, Math. Proc. Cambridge Philos. Soc. 136, p. 583-598 (2004). Zbl1069.57015MR2055048
  4. Eliashberg (Y.).— Topological characterization of Stein manifolds of dimension &gt; 2 , Internat. J. Math. 1, p. 29-46. Zbl0699.58002MR1044658
  5. Etnyre (J. B.).— Lectures on open-book decompositions and contact structures, Amer. Math. Soc. 5, p. 103-142, (Proceedings of the Clay Mathematics Summer School) (2006). Zbl1108.53050MR2249250
  6. Geiges (H.).— An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics 109, Cambridge University Press (2008). Zbl1153.53002MR2397738
  7. Gompf (R. E.) and Stipsicz (A. I.).— 4 -Manifolds and Kirby Calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999). Zbl0933.57020MR1707327
  8. Honda (K.), Kazez (W. H.), and Matić (G.).— On the contact class in Heegaard Floer homology, J. Diff. Geom. 83(2), p. 289-311 (2009). Zbl1186.53098MR2577470
  9. Lipshitz (R.), Ozsváth (P.) and Thurston (D.).— Bordered Heegaard Floer homology: Invariance and pairing, arXiv:0810.0687. 
  10. Lisca (P.), Ozsváth (P.), Stipsicz (A. I.) and Szabó (Z.).— Heegaard Floer invariants of Legendrian knots in contact three-manifolds, J. Eur. Math. Soc (JEMS) 11(6), p. 1307-1363 (2009). Zbl1232.57017MR2557137
  11. McDuff (D.) and Salamon (D.).— j -Holomorphic Curves and Symplectic Topology, Colloquium Publications 52, American Mathematical Society (2004). Zbl1064.53051MR2045629
  12. Juhasz (A.).— Holomorphic disks and sutured manifolds, Algebr. Geom. Topol. 6, p. 1429-1457 (2006). Zbl1129.57039MR2253454
  13. Ozsváth (P.) and Stipsicz (A. I.).— Contact surgeries and the transverse invariant in knot Floer homology, J. Inst. Math. Jussieu bf 9(3) (2010), 601-632. Zbl1204.57011MR2650809
  14. Ozsváth (P.) and Szabó (Z.).— Holomorphic disks and knot invariants, Adv. Math. 186(1), p. 58-116 (2004). Zbl1062.57019MR2065507
  15. Ozsváth (P.) and Szabó (Z.).— Heegaard Floer homologies and contact structures, Duke Math. J. 129(1), p. 39-61 (2005). Zbl1083.57042MR2153455
  16. Ozsváth (P.) and Szabó (Z.).— Heegaard diagrams and holomorphic disks, Diff. faces of Geom., Int. Math. Series p. 301-348. Zbl1091.57010MR2102999
  17. Ozsváth (P.) and Szabó (Z.).— Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159(3), p. 1027-1158 (2004). Zbl1073.57009MR2113019
  18. Ozsváth (P.) and Szabó (Z.).— Holomorphic disks and three-manifold invariants: Properties and applications, Ann. of Math. 159(3), p. 1159-1245 (2004). Zbl1081.57013MR2113020
  19. Ozsváth (P.) and Szabó (Z.).— Holomorphic triangles and invariants of smooth four-manifolds, Adv. Math. 202(2), p. 326-400 (2006). Zbl1099.53058MR2222356
  20. Ozsváth (P.) and Szabó (Z.).— On the Heegaard Floer homology of branched double-covers, Adv. Math. 194, p. 1-33 (2005). Zbl1076.57013MR2141852
  21. Ozsváth (P.) and Szabó (Z.).— Introduction to Heegaard Floer theory, Clay Math. Proc. 5, p. 3-28 (2006). Zbl1107.57022
  22. Ozsváth (P.) and Szabó (Z.).— Lectures on Heegaard Floer homology, Clay Math. Proc. 5, p. 29-70 (2006). Zbl1105.57029MR2249248
  23. Ozsváth (P.) and Szabó (Z.).— Heegaard diagrams and holomorphic disks, Different faces of geometry p. 301-348. Zbl1091.57010MR2102999
  24. Ozsváth (P.) and Szabó (Z.).— On the skein exact sequence for knot Floer homology, arXiv:0707.1165. 
  25. Ozbagci (B.) and Stipsicz (A. I.).— Surgery on Contact 3 -Manifolds and Stein Surfaces, Bolyai Society Mathematical Studies 13, Springer-Verlag (2004). Zbl1067.57024MR2114165
  26. Sahamie (B.).— Dehn twists in Heegaard Floer homology, Algebr. Geom. Topol. 10, p. 465-524 (2010). Zbl1209.57017MR2602843
  27. Sarkar (S.) and Wang (J.).— An algorithm for computing some Heegaard Floer homologies, Ann. of Math., vol. 171 (2), p. 1213-1236 (2010). Zbl1228.57017MR2630063
  28. Turaev (V.).— Torsion invariants of Spin c -structures on 3 -manifolds, Math. Research Letters 6, p. 679-695 (1997). Zbl0891.57019MR1484699

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.