On arithmetic Fuchsian groups and their characterizations

Slavyana Geninska

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 5, page 1093-1102
  • ISSN: 0240-2963

Abstract

top
This is a small survey paper about connections between the arithmetic and geometric properties in the case of arithmetic Fuchsian groups.

How to cite

top

Geninska, Slavyana. "On arithmetic Fuchsian groups and their characterizations." Annales de la faculté des sciences de Toulouse Mathématiques 23.5 (2014): 1093-1102. <http://eudml.org/doc/275353>.

@article{Geninska2014,
abstract = {This is a small survey paper about connections between the arithmetic and geometric properties in the case of arithmetic Fuchsian groups.},
author = {Geninska, Slavyana},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {arithmetic Fuchsian groups; lattices; semi-arithmetic Fuchsian groups; discrete subgroups},
language = {eng},
number = {5},
pages = {1093-1102},
publisher = {Université Paul Sabatier, Toulouse},
title = {On arithmetic Fuchsian groups and their characterizations},
url = {http://eudml.org/doc/275353},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Geninska, Slavyana
TI - On arithmetic Fuchsian groups and their characterizations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 5
SP - 1093
EP - 1102
AB - This is a small survey paper about connections between the arithmetic and geometric properties in the case of arithmetic Fuchsian groups.
LA - eng
KW - arithmetic Fuchsian groups; lattices; semi-arithmetic Fuchsian groups; discrete subgroups
UR - http://eudml.org/doc/275353
ER -

References

top
  1. Beardon (A.).— The Geometry of discrete groups, Graduate Texts in Mathematics 91, Springer-Verlag, New York (1995). Zbl0528.30001MR1393195
  2. Benoist (Y.).— Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7, p. 1-47 (1997). Zbl0947.22003MR1437472
  3. Cohen (P.) and Wolfart (J.).— Modular embeddings for some non-arithmetic Fuchsian groups, Acta Arith. 61, no. 1, p. 93-110 (1990). Zbl0717.14014MR1075639
  4. Corlette (K.).— Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2) 135, p. 165-182 (1992). Zbl0768.53025MR1147961
  5. Dal’Bo (F.) and Kim (I.).— A criterion of conjugacy for Zariski dense subgroups, C. R. Acad. Sci. Paris, t. 330 série I, p. 647-650 (2000). Zbl0953.22013MR1763904
  6. Deligne (P.) and Mostow (G. D.).— Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. IHES 63, p. 5-89 (1986). Zbl0615.22008MR849651
  7. Geninska (S.) and Leuzinger (E.).— A geometric characterization of arithmetic Fuchsian groups, Duke Math. J. 142, p. 111-125 (2008). Zbl1141.20029MR2397884
  8. Geninska (S.).— The limit set of subgroups of arithmetic groups in PSL ( 2 , ) q × PSL ( 2 , ) r , arXiv:1001.1720, to appear in Groups Geom. Dyn.. 
  9. Geninska (S.).— Examples of infinite covolume subgroups of PSL ( 2 , ) r with big limit sets, Math. Zeit. 272, p. 389-404 (2012). Zbl1252.11040MR2968231
  10. Gromov (M.) and Piatetski-Shapiro (I.).— Nonarithmetic groups in Lobachevsky spaces, Publ. Math. IHES 66, p. 93-103 (1988). Zbl0649.22007MR932135
  11. Gromov (M.) and Schoen (R.).— Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math. IHES 76, p. 165-246 (1992). Zbl0896.58024MR1215595
  12. Kapovich (M.).— Arithmetic aspects of self-similar groups, Groups Geom. Dyn. 6, no. 4, p. 737-754 (2012). Zbl1283.20050MR2996409
  13. Katok (S.).— Fuchsian Groups, Chicago Lectures in Math., University of Chicago Press, Chicago (1992). Zbl0753.30001MR1177168
  14. Link (G.).— Geometry and Dynamics of Discrete Isometry Groups of Higher Rank Symmetric Spaces, Geometriae Dedicata 122, no 1, p. 51-75 (2006). Zbl1141.53042MR2295541
  15. Luo (W.) and Sarnak (P.).— Number variance for arithmetic hyperbolic surfaces, Comm. Math. Phys. 161, p. 419-432 (1994). Zbl0797.58069MR1266491
  16. Maclachlan (C.) and Reid (A.).— The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics 219, Springer-Verlag (2003). Zbl1025.57001MR1937957
  17. Margulis (G. A.).— Discrete subgroups of semisimple Lie groups, Springer-Verlag, Berlin (1991). Zbl0732.22008MR1090825
  18. Witte Morris (D.).— Introduction to Arithmetic Groups, preprint, http://arxiv.org/abs/math/0106063. 
  19. Mostow (G. D.).— On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86, p. 171-276 (1980). Zbl0456.22012MR586876
  20. Sarnak (P.).— Arithmetic quantum chaos, Israel Math. Conf. Proc. 8, p. 183-236 (1995). Zbl0831.58045MR1321639
  21. Schmutz (P.).— Arithmetic groups and the length spectrum of Riemann surfaces, Duke Math. J. 84, p. 199-215 (1996). Zbl0867.30030MR1394753
  22. Schmutz Schaller (P.).— Geometry of Riemann surfaces based on closed geodesics, Bull. Amer. Math. Soc. 35, p. 193-214 (1998). Zbl1012.30029MR1609636
  23. Schmutz Schaller (P.) and J. Wolfart.— Semi-arithmetic Fuchsian groups and modular embeddings, J. London Math. Soc. (2) 61, p. 13-24 (2000). Zbl0968.11022MR1745404
  24. Takeuchi (K.).— A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27, p. 600-612 (1975). Zbl0311.20030MR398991

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.