On Fatou-Julia decompositions
Taro Asuke[1]
- [1] Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 1, page 155-195
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topAsuke, Taro. "On Fatou-Julia decompositions." Annales de la faculté des sciences de Toulouse Mathématiques 22.1 (2013): 155-195. <http://eudml.org/doc/275354>.
@article{Asuke2013,
abstract = {We propose a Fatou-Julia decomposition for holomorphic pseudosemigroups. It will be shown that the limit sets of finitely generated Kleinian groups, the Julia sets of mapping iterations and Julia sets of complex codimension-one regular foliations can be seen as particular cases of the decomposition. The decomposition is applied in order to introduce a Fatou-Julia decomposition for singular holomorphic foliations. In the well-studied cases, the decomposition behaves as expected.},
affiliation = {Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan},
author = {Asuke, Taro},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {6},
number = {1},
pages = {155-195},
publisher = {Université Paul Sabatier, Toulouse},
title = {On Fatou-Julia decompositions},
url = {http://eudml.org/doc/275354},
volume = {22},
year = {2013},
}
TY - JOUR
AU - Asuke, Taro
TI - On Fatou-Julia decompositions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 1
SP - 155
EP - 195
AB - We propose a Fatou-Julia decomposition for holomorphic pseudosemigroups. It will be shown that the limit sets of finitely generated Kleinian groups, the Julia sets of mapping iterations and Julia sets of complex codimension-one regular foliations can be seen as particular cases of the decomposition. The decomposition is applied in order to introduce a Fatou-Julia decomposition for singular holomorphic foliations. In the well-studied cases, the decomposition behaves as expected.
LA - eng
UR - http://eudml.org/doc/275354
ER -
References
top- Asuke (T.).— A Fatou-Julia decomposition of transversally holomorphic foliations, Ann. Inst. Fourier (Grenoble) 60, p. 1057-1104 (2010). Zbl1198.57020MR2680824
- Baum (P.) and Bott (R.).— Singularities of holomorphic foliations, J. Differential Geom. 7, p. 279-342 (1972). Zbl0268.57011MR377923
- Bullett (S.) and Penrose (C.).— Regular and limit sets for holomorphic correspondences, Fund. Math. 167, p. 111-171 (2001). Zbl0984.37045MR1816043
- Fornæss (J.) and Sibony (N.).— Complex dynamics in higher dimension I., Complex analytic methods in dynamical systems (Rio de Janeiro, 1992), Astérisque, vol. 222, p. 5, p. 201-231 (1994). Zbl0813.58030MR1285389
- Ghys (É.).— Flots transversalement affines et tissus feuilletés, Analyse globale et physique mathématique (Lyon, 1989), Mém. Soc. Math. France (N.S.) 46, p. 123-150 (1991). Zbl0761.57016MR1125840
- Ghys (É.), Gómez-Mont (X.), and Saludes (J.).— Fatou and Julia Components of Transversely Holomorphic Foliations, Essays on Geometry and Related Topics: Memoires dediés à André Haefliger (É. Ghys, P. de la Harpe, V.F.R. Jones, V. Sergiescu, and T. Tsuboi, eds.), Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, p. 287-319 (2001). Zbl1013.37043MR1929331
- Haefliger (A.).— Leaf closures in Riemannian foliations, A fête of topology, Academic Press, Boston, MA, p. 3-32 (1988). Zbl0667.57012MR928394
- Haefliger (A.).— Foliations and compactly generated pseudogroups, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, p. 275-295 (2002). Zbl1002.57059MR1882774
- Hinkkanen (A.) and Martin (G.J.).— The dynamics of semigroups of rational functions I, Proc. London Math. Soc. (3) 73, p. 358-384 (1996). Zbl0859.30026MR1397693
- Ito (T.).— A Poincaré-Bendixson type theorem for holomorphic vector fields, Singularities of holomorphic vector fields and related topics (Kyoto, 1993), Sūrikaisekikenkyūsho Kōkyūroku, Kyoto Univ. Research Institute for Mathematical Sciences, Kyoto, Japan, p. 1-9 (1994). Zbl0900.32014MR1332098
- Kupka (I.) and Sallet (G.).— A sufficient condition for the transitivity of pseudosemigroups: application to system theory, J. Differential Equations 47, p. 462-470 (1983). Zbl0527.93029MR692840
- Lehner (J.).— Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, Amer. Math. Soc., Providence, RI (1964). Zbl0178.42902MR164033
- Loewner (C.).— On semigroups in analysis and geometry, Bull. Amer. Math. Soc. 70, p. 1-15 (1964). Zbl0196.23701MR160192
- Matsuzaki (K.) and Taniguchi (M.).— Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998). Zbl0892.30035MR1638795
- Milnor (J.).— Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ (2006). Zbl1085.30002MR2193309
- Morosawa (S.), Nishimura (Y.), Taniguchi (M.), and Ueda (T.).— Holomorphic dynamics, Cambridge Studies in Advanced Mathematics, vol. 66, Cambridge University Press, Cambridge (2000). Zbl0979.37001MR1747010
- Ransford (T.).— Potential theory in the complex plane, London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge (1995). Zbl0828.31001MR1334766
- Sullivan (D.).— Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122, p. 401-418 (1985). Zbl0589.30022MR819553
- Sumi (H.).— Dimensions of Julia sets of expanding rational semigroups, Kodai Math. J. 28, p. 390-422 (2005). Zbl1092.37027MR2153926
- Suwa (T.).— Residues of complex analytic foliations relative to singular invariant subvarieties, Singularities and complex geometry (Beijing, 1994), AMS/IP Stud. Adv. Math., 5, Amer. Math. Soc., Providence, RI, p. 230-245 (1997). Zbl0916.32023MR1468279
- Ueda (T.).— Fatou sets in complex dynamics on projective spaces, J. Math. Soc. Japan 46, p. 545-555 (1994). Zbl0829.58025MR1276837
- Woronowicz (S.L.).— Pseudospaces, pseudogroups and Pontriagin duality, Mathematical problems in theoretical physics (Proc. Internat. Conf. Math. Phys., Lausanne, 1979), Lecture Notes in Phys., vol. 116, Springer, Berlin-New York, p. 407-412 (1980). Zbl0513.46046MR582650
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.