# Monomial ideals with 3-linear resolutions

Marcel Morales; Abbas Nasrollah Nejad; Ali Akbar Yazdan Pour; Rashid Zaare-Nahandi

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

- Volume: 23, Issue: 4, page 877-891
- ISSN: 0240-2963

## Access Full Article

top## Abstract

top## How to cite

topMorales, Marcel, et al. "Monomial ideals with 3-linear resolutions." Annales de la faculté des sciences de Toulouse Mathématiques 23.4 (2014): 877-891. <http://eudml.org/doc/275357>.

@article{Morales2014,

abstract = {In this paper, we study the Castelnuovo-Mumford regularity of square-free monomial ideals generated in degree $3$. We define some operations on the clutters associated to such ideals and prove that the regularity is preserved under these operations. We apply these operations to introduce some classes of ideals with linear resolutions and also show that any clutter corresponding to a triangulation of the sphere does not have linear resolution while any proper subclutter of it has a linear resolution.},

author = {Morales, Marcel, Nasrollah Nejad, Abbas, Akbar Yazdan Pour, Ali, Zaare-Nahandi, Rashid},

journal = {Annales de la faculté des sciences de Toulouse Mathématiques},

keywords = {Castelnuovo-Mumford regularity; square free monomial ideals; clutter; linear resolutions},

language = {eng},

number = {4},

pages = {877-891},

publisher = {Université Paul Sabatier, Toulouse},

title = {Monomial ideals with 3-linear resolutions},

url = {http://eudml.org/doc/275357},

volume = {23},

year = {2014},

}

TY - JOUR

AU - Morales, Marcel

AU - Nasrollah Nejad, Abbas

AU - Akbar Yazdan Pour, Ali

AU - Zaare-Nahandi, Rashid

TI - Monomial ideals with 3-linear resolutions

JO - Annales de la faculté des sciences de Toulouse Mathématiques

PY - 2014

PB - Université Paul Sabatier, Toulouse

VL - 23

IS - 4

SP - 877

EP - 891

AB - In this paper, we study the Castelnuovo-Mumford regularity of square-free monomial ideals generated in degree $3$. We define some operations on the clutters associated to such ideals and prove that the regularity is preserved under these operations. We apply these operations to introduce some classes of ideals with linear resolutions and also show that any clutter corresponding to a triangulation of the sphere does not have linear resolution while any proper subclutter of it has a linear resolution.

LA - eng

KW - Castelnuovo-Mumford regularity; square free monomial ideals; clutter; linear resolutions

UR - http://eudml.org/doc/275357

ER -

## References

top- Bruns (W.), Herzog (J.).— Cohen-Macaulay Rings, Revised Edition, Cambridge University Press, Cambridge (1996). Zbl0909.13005MR1251956
- CoCoATeam: CoCoA.— A System for Doing Computations in Commutative Algebra, available at http://cocoa.dima.unige.it.
- Connon (E.), Faridi (S.).— A criterion for a monomial ideal to have a linear resolution in characteristic 2, arXiv:1306.2857 [math.AC]. Zbl1308.05111
- Eagon (J. A.), Reiner (V.).— Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure and Applied Algebra 130, p. 265-275 (1998). Zbl0941.13016MR1633767
- Emtander (E.).— Betti numbers of hypergraphs. Commun. Algebra 37, No. 5, p. 1545-1571 (2009). Zbl1191.13015MR2526320
- Emtander (E.).— A class of hypergraphs that generalizes chordal graphs, Math. Scand. 106, no. 1, p. 50-66 (2010). Zbl1183.05053MR2603461
- Fröberg (R.).— On Stanley-Reisner rings, Topics in algebra, Part 2 (Warsaw, 1988), Banach Center Publ., vol. 26, PWN, Warsaw, p. 57-70 (1990). Zbl0741.13006MR1171260
- Morales (M.).— Simplicial ideals, $2$-linear ideals and arithmetical rank, J. Algebra 324, no. 12, p. 3431-3456 (2010). Zbl1217.13007MR2735392
- Morales (M.), Yazdan Pour (A.-A.), Zaare-Nahandi (R.).— The regularity of edge ideals of graphs. J. Pure Appl. Algebra 216, No. 12, p. 2714-2719 (2012). Zbl1316.13017MR2943752
- Decker (W.), Greuel (G.-M.), G. Pfister (G.), H. Schönemann (H.).— Singular 3-1-3 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2011). Zbl0902.14040
- Stanley (R.).— Combinatorics and Commutative Algebra, second ed., Progress in Mathematics, vol. 41, Birkhäuser Boston Inc., Boston, MA, (1996). Zbl0838.13008MR1453579
- Terai (N.).— Generalization of Eagon-Reiner theorem and $h$-vectors of graded rings, preprint (2000).
- Woodroofe (R.).— Chordal and sequentially Cohen-Macaulay clutters, Electron. J. Combin. 18 (2011), no. 1, Paper 208, 20 pages, arXiv:0911.4697. Zbl1236.05213MR2853065

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.