On the Configuration Spaces of Grassmannian Manifolds
Sandro Manfredini; Simona Settepanella
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 2, page 353-359
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topManfredini, Sandro, and Settepanella, Simona. "On the Configuration Spaces of Grassmannian Manifolds." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 353-359. <http://eudml.org/doc/275362>.
@article{Manfredini2014,
abstract = {Let $\{\mathcal\{F\}\}_h^i(k,n)$ be the $i$-th ordered configuration space of all distinct points $H_1,\ldots ,H_h$ in the Grassmannian $Gr(k,n)$ of $k$-dimensional subspaces of $\scriptstyle \{\mathbb\{C\}\}^n$, whose sum is a subspace of dimension $i$. We prove that $\{\mathcal\{F\}\}_h^i(k,n)$ is (when non empty) a complex submanifold of $Gr(k,n)^h$ of dimension $i(n-i)+hk(i-k)$ and its fundamental group is trivial if $i=min(n,hk)$, $hk \ne n$ and $n>2$ and equal to the braid group of the sphere $\scriptstyle \{\mathbb\{C\}\}$$P^1$ if $n=2$. Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. $k=n-1$.},
author = {Manfredini, Sandro, Settepanella, Simona},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {3},
number = {2},
pages = {353-359},
publisher = {Université Paul Sabatier, Toulouse},
title = {On the Configuration Spaces of Grassmannian Manifolds},
url = {http://eudml.org/doc/275362},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Manfredini, Sandro
AU - Settepanella, Simona
TI - On the Configuration Spaces of Grassmannian Manifolds
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 353
EP - 359
AB - Let ${\mathcal{F}}_h^i(k,n)$ be the $i$-th ordered configuration space of all distinct points $H_1,\ldots ,H_h$ in the Grassmannian $Gr(k,n)$ of $k$-dimensional subspaces of $\scriptstyle {\mathbb{C}}^n$, whose sum is a subspace of dimension $i$. We prove that ${\mathcal{F}}_h^i(k,n)$ is (when non empty) a complex submanifold of $Gr(k,n)^h$ of dimension $i(n-i)+hk(i-k)$ and its fundamental group is trivial if $i=min(n,hk)$, $hk \ne n$ and $n>2$ and equal to the braid group of the sphere $\scriptstyle {\mathbb{C}}$$P^1$ if $n=2$. Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. $k=n-1$.
LA - eng
UR - http://eudml.org/doc/275362
ER -
References
top- Berceanu (B.), Parveen (S.).— Braid groups in complex projective spaces, Adv. Geom. 12, p. 269-286 (2012). Zbl1250.55007
- Birman (J. S.).— Braids, Links, and Mapping Class Groups, Annals of Mathematics 82, Princeton University Press (1974). Zbl0305.57013MR375281
- Fadell (E.R.).— Homotopy groups of configuration spaces and the string problem of Dirac, Duke Math. J. 29, p. 231-242 (1962). Zbl0122.17803MR141127
- Fadell (E.R), Husseini (S.Y.).— Geometry and Topology of Configuration Spaces, Springer Monographs in Mathematics (2001), Springer-Verlarg Berlin. Zbl0962.55001MR1802644
- Fadell (E.R.), Neuwirth (L.).— Configuration spaces, Math. Scand. 10, p. 111-118 (1962). Zbl0136.44104MR141126
- Manfredini (S.), Parveen (S.), Settepanella (S.).— Braid groups in complex spaces, arXiv: 1209.2839 (2012).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.