Hyperplane arrangements and Milnor fibrations
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 2, page 417-481
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSuciu, Alexander I.. "Hyperplane arrangements and Milnor fibrations." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 417-481. <http://eudml.org/doc/275363>.
@article{Suciu2014,
abstract = {There are several topological spaces associated to a complex hyperplane arrangement: the complement and its boundary manifold, as well as the Milnor fiber and its own boundary. All these spaces are related in various ways, primarily by a set of interlocking fibrations. We use cohomology with coefficients in rank $1$ local systems on the complement of the arrangement to gain information on the homology of the other three spaces, and on the monodromy operators of the various fibrations.},
author = {Suciu, Alexander I.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {arrangements of hyperplanes; central arrangement; Milnor fibration; cohomology jump loci; characteristic variety; resonance variety},
language = {eng},
month = {3},
number = {2},
pages = {417-481},
publisher = {Université Paul Sabatier, Toulouse},
title = {Hyperplane arrangements and Milnor fibrations},
url = {http://eudml.org/doc/275363},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Suciu, Alexander I.
TI - Hyperplane arrangements and Milnor fibrations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 417
EP - 481
AB - There are several topological spaces associated to a complex hyperplane arrangement: the complement and its boundary manifold, as well as the Milnor fiber and its own boundary. All these spaces are related in various ways, primarily by a set of interlocking fibrations. We use cohomology with coefficients in rank $1$ local systems on the complement of the arrangement to gain information on the homology of the other three spaces, and on the monodromy operators of the various fibrations.
LA - eng
KW - arrangements of hyperplanes; central arrangement; Milnor fibration; cohomology jump loci; characteristic variety; resonance variety
UR - http://eudml.org/doc/275363
ER -
References
top- Arapura (D.).— Geometry of cohomology support loci for local systems. I., J. Algebraic Geom. 6, no. 3, p. 563-597 (1997). Zbl0923.14010MR1487227
- Artal Bartolo (E.), Cogolludo (J.), Matei (D.).— Characteristic varieties of quasi-projective manifolds and orbifolds, Geom. Topol. 17, no. 1, p. 273-309 (2013). Zbl1266.32035MR3035328
- Brieskorn (E.).— Sur les groupes de tresses (d’après V. I. Arnol’d), Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, p. 21-44, Lecture Notes in Math., vol. 317, Springer, Berlin (1973). Zbl0277.55003MR422674
- Budur (N.), Dimca (A.), Saito (M.).— First Milnor cohomology of hyperplane arrangements, in: Topology of algebraic varieties and singularities, p. 279-292, Contemp. Math., vol. 538, Amer. Math. Soc., Providence, RI (2011). Zbl1228.32027MR2777825
- Budur (N.), Wang (B.).— Cohomology jump loci of quasi-projective varieties, http://arxiv.org/abs/1211.3766v1 Zbl1319.14027
- Cohen (D.), Denham (G.), Suciu (A.).— Torsion in Milnor fiber homology, Alg. Geom. Topology 3, p. 511-535 (2003). Zbl1030.32022MR1997327
- Cohen (D.), Dimca (A.), Orlik (P.).— Nonresonance conditions for arrangements, Annales Institut Fourier (Grenoble) 53, no. 6, p. 1883-1896 (2003). Zbl1054.32016MR2038782
- Cohen (D.), Suciu (A.).— On Milnor fibrations of arrangements, J. London Math. Soc. (2) 51, no. 1, p. 105-119 (1995). Zbl0814.32007MR1310725
- Cohen (D.), Suciu (A.).— The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helvetici 72, no. 2, p. 285-315 (1997). Zbl0959.52018MR1470093
- Cohen (D.), Suciu (A.).— Characteristic varieties of arrangements, Math. Proc. Cambridge Phil. Soc. 127, no. 1, p. 33-53 (1999). Zbl0963.32018MR1692519
- Cohen (D.), Suciu (A.).— Boundary manifolds of projective hypersurfaces, Advances in Math. 206, no. 2, p. 538-566 (2006). Zbl1110.14036MR2263714
- Cohen (D.), Suciu (A.).— The boundary manifold of a complex line arrangement, Geometry & Topology Monographs 13, p. 105-146 (2008). Zbl1137.32013MR2508203
- Denham (G.).— Homological aspects of hyperplane arrangements, in: Arrangements, local systems and singularities, 39-58, Progress in Math., vol. 283, Birkhäuser, Basel (2010). Zbl06252639MR3025859
- Denham (G.), Suciu (A.).— Multinets, parallel connections, and Milnor fibrations of arrangements, Proc. London Math. Soc. (to appear), available at http://arxiv.org/abs/1209.3414v2 Zbl1307.32024
- Dimca (A.).— Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York (1992). Zbl0753.57001MR1194180
- Dimca (A.).— Sheaves in topology, Universitext, Springer-Verlag, Berlin (2004). Zbl1043.14003MR2050072
- Dimca (A.).— Characteristic varieties and constructible sheaves, Rend. Lincei Mat. Appl. 18, no. 4, p. 365-389 (2007). Zbl1139.14009MR2349994
- Dimca (A.).— Monodromy of triple point line arrangements, in: Singularities in Geometry and Topology 2011, Adv. Std. Pure Math. (to appear), available at http://arxiv.org/abs/1107.2214v2 MR815487
- Dimca (A.), Papadima (S.).— Finite Galois covers, cohomology jump loci, formality properties, and multinets, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10, no. 2, p. 253-268 (2011). Zbl1239.32023MR2856148
- Dimca (A.), Papadima (S.), Suciu (A.).— Alexander polynomials: Essential variables and multiplicities, Int. Math. Res. Notices 2008, no. 3, Art. ID rnm119, 36 p. Zbl1156.32018MR2416998
- Dimca (A.), Papadima (S.), Suciu (A.).— Topology and geometry of cohomology jump loci, Duke Math. Journal 148, no. 3, p. 405-457 (2009). Zbl1222.14035MR2527322
- Durfee (A.).— Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276, no. 2, p. 517-530 (1983). Zbl0529.14013MR688959
- Falk (M.).— Arrangements and cohomology, Ann. Combin. 1, no. 2, p. 135-157 (1997). Zbl0941.52022MR1629681
- Falk (M.).— Resonance varieties over fields of positive characteristic, Int. Math. Research Notices 2007, no. 3, article ID rnm009, 25 pages (2007). Zbl1180.14054MR2337033
- Falk (M.), Yuzvinsky (S.).— Multinets, resonance varieties, and pencils of plane curves, Compositio Math. 143, no. 4, p. 1069-1088 (2007). Zbl1122.52009MR2339840
- Félix (Y.), Oprea (J.), Tanré (D.).— Algebraic models in geometry, Oxford Grad. Texts in Math., vol. 17, Oxford Univ. Press, Oxford (2008). Zbl1149.53002MR2403898
- Hatcher (A.).— Algebraic topology, Cambridge University Press, Cambridge (2002). Zbl1044.55001MR1867354
- Hironaka (E.).— Abelian coverings of the complex projective plane branched along configurations of real lines, Memoirs A.M.S., vol. 502, Amer. Math. Soc., Providence, RI (1993). Zbl0788.14054MR1164128
- Hironaka (E.).— Alexander stratifications of character varieties, Annales de l’Institut Fourier (Grenoble) 47, no. 2, p. 555-583 (1997). Zbl0870.57003MR1450425
- Hironaka (E.).— Boundary manifolds of line arrangements, Math. Annalen 319, no. 1, p. 17-32 (2001). Zbl0995.32016MR1812817
- Hirzebruch (F.).— The topology of normal singularities of an algebraic surface (after D. Mumford), Séminaire Bourbaki, Vol. 8, Exp. No. 250, p. 129-137, Soc. Math. France, Paris (1995). Zbl0126.16903MR1611536
- Jiang (T.), Yau (S.S.-T.).— Topological invariance of intersection lattices of arrangements in , Bull. Amer. Math. Soc. 29, no. 1, p. 88-93 (1993). Zbl0847.52011MR1197426
- Jiang (T.), Yau (S.S.-T.).— Intersection lattices and topological structures of complements of arrangements in , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26, no. 2, p. 357-381 (1998). Zbl0973.32015MR1631597
- Libgober (A.).— On the homology of finite abelian coverings, Topology Appl. 43, no. 2, p. 157-166. (1992) Zbl0770.14004MR1152316
- Libgober (A.).— Characteristic varieties of algebraic curves, in: Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), p. 215-254, NATO Sci. Ser. II Math. Phys. Chem., vol. 36, Kluwer Acad. Publ., Dordrecht (2001). Zbl1045.14016MR1866902
- Libgober (A.).— First order deformations for rank one local systems with a non-vanishing cohomology, Topology Appl. 118, no. 1-2, p. 159-168 (2002). Zbl1010.52016MR1877722
- Libgober (A.).— Eigenvalues for the monodromy of the Milnor fibers of arrangements, Trends in singularities, p. 141-150, Trends Math., Birkhäuser, Basel (2002). Zbl1036.32019MR1900784
- Libgober (A.).— Non vanishing loci of Hodge numbers of local systems, Manuscripta Math. 128, no. 1, p. 1-31 (2009). Zbl1160.14004MR2470184
- Libgober (A.).— On combinatorial invariance of the cohomology of Milnor fiber of arrangements and Catalan equation over function field, in: Arrangements of hyperplanes (Sapporo 2009), p. 175-187, Adv. Stud. Pure Math., vol. 62, Math. Soc. Japan, Tokyo (2012). Zbl1260.14035MR2933797
- Libgober (A.), Yuzvinsky (S.).— Cohomology of Orlik-Solomon algebras and local systems, Compositio Math. 21 (2000), no. 3, 337-361. Zbl0952.52020MR1761630
- Măcinic (A.), Papadima (S.).— On the monodromy action on Milnor fibers of graphic arrangements, Topology Appl. 156, no. 4, p. 761-774 (2009). Zbl1170.32009MR2492960
- Matei (D.).— Massey products of complex hypersurface complements, In: Singularity Theory and its Applications, p. 205-219, Adv. Studies in Pure Math., vol. 43, Math. Soc. Japan, Tokyo (2007). Zbl1135.32026MR2325139
- Matei (D.), Suciu (A.).— Cohomology rings and nilpotent quotients of real and complex arrangements, in: Arrangements-Tokyo 1998, p. 185-215, Adv. Stud. Pure Math., vol. 27, Math. Soc. Japan, Tokyo (2000). Zbl0974.32020MR1796900
- Matei (D.), Suciu (A.).— Hall invariants, homology of subgroups, and characteristic varieties, Internat. Math. Res. Notices 2002, no. 9, p. 465-503 (2002). Zbl1061.20040MR1884468
- Milnor (J.).— Singular points of complex hypersurfaces, Annals of Math. Studies, vol. 61, Princeton Univ. Press, Princeton, NJ (1968). Zbl0184.48405MR239612
- Némethi (A.), Szilárd (A.).— Milnor fiber boundary of a non-isolated surface singularity, Lecture Notes in Math, vol. 2037, Springer-Verlag, Berlin Heidelberg (2012). Zbl1239.32024MR3024944
- Orlik (P.), Randell (R.).— The Milnor fiber of a generic arrangement, Arkiv für Mat. 31, no. 1, p. 71-81 (1993). Zbl0807.32029MR1230266
- Orlik (P.), Solomon (L.).— Combinatorics and topology of complements of hyperplanes, Invent. Math. 56, no. 2, p. 167-189 (1980). Zbl0432.14016MR558866
- Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren Math. Wiss., vol. 300, Springer-Verlag, Berlin (1992). Zbl0757.55001MR1217488
- Oxley (J.).— Matroid theory, Oxford Sci. Publ, Oxford University Press, New York (1992). Zbl1115.05001MR1207587
- Papadima (S.), Suciu (A.).— Chen Lie algebras, Intern. Math. Res. Notices 2004, no. 21, p. 1057-1086 (2004). Zbl1076.17007MR2037049
- Papadima (S.), Suciu (A.).— Algebraic invariants for right-angled Artin groups, Math. Ann. 334, no. 3, p. 533-555 (2006). Zbl1165.20032MR2207874
- Papadima (S.), Suciu (A.).— Geometric and algebraic aspects of -formality, Bull. Math. Soc. Sci. Math. Roumanie 52, no. 3, p. 355-375 (2009). Zbl1199.55010MR2554494
- Papadima (S.), Suciu (A.).— Bieri-Neumann-Strebel-Renz invariants and homology jumping loci, Proc. London Math. Soc. 100, no. 3, p. 795-834 (2010). Zbl1273.55003MR2640291
- Pereira (J.), Yuzvinsky (S.).— Completely reducible hypersurfaces in a pencil, Adv. Math. 219, no. 2, p. 672-688 (2008). Zbl1146.14005MR2435653
- Rybnikov (G.).— On the fundamental group of the complement of a complex hyperplane arrangement, Funct. Anal. Appl. 45, no. 2, p. 137-148 (2011). Zbl1271.14085MR2848779
- Sakuma (M.).— Homology of abelian coverings of links and spatial graphs, Canad. J. Math. 47, no. 1, p. 201-224 (1995). Zbl0839.57001MR1319696
- Suciu (A.).— Fundamental groups of line arrangements: Enumerative aspects, in: Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), p. 43-79, Contemp. Math., vol 276, Amer. Math. Soc., Providence, RI (2001). Zbl0998.14012MR1837109
- Suciu (A.).— Translated tori in the characteristic varieties of complex hyperplane arrangements, Topology Appl. 118, no. 1-2, p. 209-223 (2002). Zbl1021.32009MR1877726
- Suciu (A.).— Fundamental groups, Alexander invariants, and cohomology jumping loci, in: Topology of algebraic varieties and singularities, p. 179-223, Contemp. Math., vol. 538, Amer. Math. Soc., Providence, RI (2011). Zbl1214.14017MR2777821
- Suciu (A.).— Geometric and homological finiteness in free abelian covers, in: Configuration Spaces: Geometry, Combinatorics and Topology (Centro De Giorgi, 2010), p. 461-501, Publications of the Scuola Normale Superiore, vol. 14, Edizioni della Normale, Pisa (2012). Zbl1273.14109
- Suciu (A.).— Characteristic varieties and Betti numbers of free abelian covers, Intern. Math. Res. Notices (2014), no. 4, p. 1063-1124 (2014). Zbl06340344
- Suciu (A.), Yang (Y.), Zhao (G.).— Homological finiteness of abelian covers, Ann. Sc. Norm. Super. Pisa Cl. Sci. (to appear), available at http://arxiv.org/abs/1204.4873v2. Zbl06474886
- Westlund (E.).— The boundary manifold of an arrangement, Ph.D. thesis, University of Wisconsin, Madison, WI (1997). MR2697010
- Yoshinaga (M.).— Milnor fibers of real line arrangements, J. Singul. 7, p. 242-259 (2013). Zbl1293.32036MR3090727
- Yuzvinsky (S.).— A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137, no. 5, p. 1641-1648 (2009). Zbl1173.14021MR2470822
- Yuzvinsky (S.).— Resonance varieties of arrangement complements, in: Arrangements of Hyperplanes (Sapporo 2009), p. 553-570, Advanced Studies Pure Math., vol. 62, Kinokuniya, Tokyo (2012). Zbl1270.52030MR2933810
- Zuber (H.).— Non-formality of Milnor fibers of line arrangements, Bull. London Math. Soc. 42, no. 5, p. 905-911 (2010). Zbl1202.32022MR2728693
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.