Nonresonance conditions for arrangements
Daniel C. Cohen[1]; Alexandru Dimca[2]; Peter Orlik[3]
- [1] Louisiana State University, Department of Mathematics, Baton Rouge LA 70803 (USA)
- [2] Université Bordeaux I, Laboratoire de Mathématiques Pures, 351 cours de la Libération, 33405 Talence Cedex (France)
- [3] University of Wisconsin, Department of Mathematics, Madison WI 53706 (USA)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 6, page 1883-1896
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCohen, Daniel C., Dimca, Alexandru, and Orlik, Peter. "Nonresonance conditions for arrangements." Annales de l’institut Fourier 53.6 (2003): 1883-1896. <http://eudml.org/doc/116087>.
@article{Cohen2003,
abstract = {We prove a vanishing theorem for the cohomology of the complement of a complex hyperplane
arrangement with coefficients in a complex local system. This result is compared with
other vanishing theorems, and used to study Milnor fibers of line arrangements, and
hypersurface arrangements.},
affiliation = {Louisiana State University, Department of Mathematics, Baton Rouge LA 70803 (USA); Université Bordeaux I, Laboratoire de Mathématiques Pures, 351 cours de la Libération, 33405 Talence Cedex (France); University of Wisconsin, Department of Mathematics, Madison WI 53706 (USA)},
author = {Cohen, Daniel C., Dimca, Alexandru, Orlik, Peter},
journal = {Annales de l’institut Fourier},
keywords = {hyperplane arrangement; local system; Milnor fiber; vanishing theorem},
language = {eng},
number = {6},
pages = {1883-1896},
publisher = {Association des Annales de l'Institut Fourier},
title = {Nonresonance conditions for arrangements},
url = {http://eudml.org/doc/116087},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Cohen, Daniel C.
AU - Dimca, Alexandru
AU - Orlik, Peter
TI - Nonresonance conditions for arrangements
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 6
SP - 1883
EP - 1896
AB - We prove a vanishing theorem for the cohomology of the complement of a complex hyperplane
arrangement with coefficients in a complex local system. This result is compared with
other vanishing theorems, and used to study Milnor fibers of line arrangements, and
hypersurface arrangements.
LA - eng
KW - hyperplane arrangement; local system; Milnor fiber; vanishing theorem
UR - http://eudml.org/doc/116087
ER -
References
top- K. Aomoto, M. Kita, Hypergeometric Functions, (in Japanese), (1994), Springer-Verlag, Tokyo Zbl1229.33001
- A. Beauville, Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann (d'après A. Bolibruch), Séminaire Bourbaki, Vol. 1992/93 216, Exp. No. 765, 4 (1993), 103-119 Zbl0796.34007
- A. Beilinson, J. Bernstein, P. Deligne, Faisceaux Pervers, Analysis and topology on singular spaces, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris Zbl0536.14011
- A. Bolibrukh, The Riemann-Hilbert problem, Russian Math. Surveys 45 (1990), 1-58 Zbl0706.34005MR1069347
- D. Cohen, A. Suciu, On Milnor fibrations of arrangements, J. London Math. Soc. 51 (1995), 105-119 Zbl0814.32007MR1310725
- J. Damon, On the number of bounding cycles for nonlinear arrangements, Arrangements--Tokyo 1998 27 (2000), 51-72, Kinokuniya, Tokyo Zbl0991.32016
- P. Deligne, Équations Différentielles à Points Singuliers Réguliers, 163 (1970), Springer-Verlag, Berlin-New York Zbl0244.14004MR417174
- A. Dimca, Singularities and Topology of Hypersurfaces, Springer-Verlag, New York Zbl0753.57001MR1194180
- A. Dimca, Sheaves in Topology Zbl1043.14003MR2050072
- A. Dimca, Hyperplane arrangements, -tame polynomials and twisted cohomology, Commutative Algebra, Singularities and Computer Algebra Vol. 115 (2003), 113-126, Kluwer Zbl1046.32003
- A. Dimca, A. Némethi, Hypersurface complements, Alexander modules and monodromy, (2002) Zbl1067.14004MR2087802
- A. Dimca, S. Papadima, Equivariant chain complexes, twisted homology and relative minimality of arrangements, (2003) Zbl1059.32007MR2060483
- H. Esnault, V. Schechtman, V. Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992), 557-561 Zbl0788.32005MR1176205
- H. Esnault, E. Viehweg, Logarithmic de Rham complexes and vanishing theorems, Invent. Math. 86 (1986), 161-194 Zbl0603.32006MR853449
- I. M. Gelfand, General theory of hypergeometric functions, Soviet Math. Dokl. 33 (1986) Zbl0037.15302MR841131
- M. Kashiwara, P. Schapira, Sheaves on Manifolds, 292 (1994), Springer-Verlag, Berlin Zbl0709.18001MR1299726
- T. Kohno, Homology of a local system on the complement of hyperplanes, Proc. Japan Acad., Ser. A 62 (1986), 144-147 Zbl0611.55005MR846350
- V. Kostov, Regular linear systems on and their monodromy groups, Complex analytic methods in dynamical systems (Rio de Janeiro, 1992) No 222 (1994), 259-283 Zbl0814.34006
- A. Libgober, The topology of complements to hypersurfaces and nonvanishing of a twisted de Rham cohomology, Singularities and complex geometry (Beijing, 1994) 5 (1997), 116-130, Amer. Math. Soc., Providence, RI Zbl0934.14009
- A. Libgober, Eigenvalues for the monodromy of the Milnor fibers of arrangements, Trends in Singularities (2002), 141-150, Birkhäuser Zbl1036.32019
- D. Massey, Perversity, duality and arrangements in , Topology Appl. 73 (1996), 169-179 Zbl0867.32018MR1416758
- P. Orlik, H. Terao, Arrangements of Hyperplanes, vol. 300, Springer-Verlag, Berlin Zbl0757.55001MR1217488
- P. Orlik, H. Terao, Arrangements and Hypergeometric Integrals, 9 (2001), Math. Soc. Japan, Tokyo Zbl0980.32010MR1814008
- V. Schechtman, H. Terao, A. Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan condition for singular vectors, J. Pure Appl. Algebra 100 (1995), 93-102 Zbl0849.32025MR1344845
- A. Varchenko, Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups, 21 (1995), World Scientific, River Edge Zbl0951.33001MR1384760
- S. Yuzvinsky, Cohomology of the Brieskorn-Orlik-Solomon algebras, Comm. Algebra 23 (1995), 5339-5354 Zbl0851.32027MR1363606
- H. Esnault, V. Schechtman, E. Viehweg, Erratum: "Cohomology of local systems on the complement of hyperplanes", Invent. Math 112 (1993) Zbl0794.32008MR1213111
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.