Polyhedral Realization of a Thurston Compactification

Matthieu Gendulphe; Yohei Komori

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 1, page 95-114
  • ISSN: 0240-2963

Abstract

top
Let Σ 3 - be the connected sum of three real projective planes. We realize the Thurston compactification of the Teichmüller space Teich ( Σ 3 - ) as a simplex in P ( 4 ) .

How to cite

top

Gendulphe, Matthieu, and Komori, Yohei. "Polyhedral Realization of a Thurston Compactification." Annales de la faculté des sciences de Toulouse Mathématiques 23.1 (2014): 95-114. <http://eudml.org/doc/275367>.

@article{Gendulphe2014,
abstract = {Let $\Sigma _3^-$ be the connected sum of three real projective planes. We realize the Thurston compactification of the Teichmüller space $\mathsf \{Teich\}(\Sigma _3^-)$ as a simplex in $\mathbf\{P\}(\mathbb\{R\}^4)$.},
author = {Gendulphe, Matthieu, Komori, Yohei},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Teichmüller space; Thurston compactification},
language = {eng},
number = {1},
pages = {95-114},
publisher = {Université Paul Sabatier, Toulouse},
title = {Polyhedral Realization of a Thurston Compactification},
url = {http://eudml.org/doc/275367},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Gendulphe, Matthieu
AU - Komori, Yohei
TI - Polyhedral Realization of a Thurston Compactification
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 1
SP - 95
EP - 114
AB - Let $\Sigma _3^-$ be the connected sum of three real projective planes. We realize the Thurston compactification of the Teichmüller space $\mathsf {Teich}(\Sigma _3^-)$ as a simplex in $\mathbf{P}(\mathbb{R}^4)$.
LA - eng
KW - Teichmüller space; Thurston compactification
UR - http://eudml.org/doc/275367
ER -

References

top
  1. Bonahon (F.).— The geometry of Teichmüller space via geodesic currents. Invent. Math., 92(1), p. 139-162 (1988). Zbl0653.32022MR931208
  2. Fathi (A.), Laudenbach (F.), and Poénaru (V.).— Travaux de Thurston sur les surfaces, Astérisque, vol. 66-67. Société Mathématique de France (1991). Zbl0446.57018MR1134426
  3. Gendulphe (M.).— Paysage systolique des surfaces hyperboliques de caractéristique -1. available at http://matthieu.gendulphe.com. 
  4. Hamenstädt (U.).— Parametrizations of Teichmüller space and its Thurston boundary. In Geometric analysis and nonlinear partial differential equations, p. 81-88. Springer (2003). Zbl1044.32005
  5. Scharlemann (M.).— The complex of curves on nonorientable surfaces. J. London Math. Soc. (2), 25(1), p. 171-184, 1982. Zbl0479.57005MR645874
  6. Schmutz (P.).— Une paramétrisation de l’espace de Teichmüller de genre g donnée par 6 g - 5 géodésiques explicites. In Séminaire de Théorie Spectrale et Géométrie, No. 10, Année 1991-1992, volume 10, p. 59-64. Univ. Grenoble I (1992). Zbl0773.53017MR1715913
  7. Schmutz (P.).— Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen. Comment. Math. Helv., 68(2), p. 278-288 (1993). Zbl0790.30036MR1214232
  8. Thurston (W. P.).— On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc., 19(2), p. 417-431 (1988). Zbl0674.57008MR956596

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.