An overview of curvature bounds and spectral theory of planar tessellations

Matthias Keller[1]

  • [1] Mathematisches Institut Friedrich Schiller Universität Jena 07743 Jena, Germany

Actes des rencontres du CIRM (2013)

  • Volume: 3, Issue: 1, page 61-68
  • ISSN: 2105-0597

Abstract

top
We give a survey about the spectral consequences of upper bounds on the curvature on planar tessellating graphs. We first discuss spectral bounds and then put a particular focus on uniformly decreasing curvature. This case is characterized by purely discrete spectrum and we further present eigenvalue asymptotics and exponential decay of eigenfunctions. We then discuss absence of compactly supported eigenfunctions and dependence of the spectrum of the Laplacian on the underlying p space.

How to cite

top

Keller, Matthias. "An overview of curvature bounds and spectral theory of planar tessellations." Actes des rencontres du CIRM 3.1 (2013): 61-68. <http://eudml.org/doc/275368>.

@article{Keller2013,
abstract = {We give a survey about the spectral consequences of upper bounds on the curvature on planar tessellating graphs. We first discuss spectral bounds and then put a particular focus on uniformly decreasing curvature. This case is characterized by purely discrete spectrum and we further present eigenvalue asymptotics and exponential decay of eigenfunctions. We then discuss absence of compactly supported eigenfunctions and dependence of the spectrum of the Laplacian on the underlying $\ell ^\{p\}$ space.},
affiliation = {Mathematisches Institut Friedrich Schiller Universität Jena 07743 Jena, Germany},
author = {Keller, Matthias},
journal = {Actes des rencontres du CIRM},
language = {eng},
month = {11},
number = {1},
pages = {61-68},
publisher = {CIRM},
title = {An overview of curvature bounds and spectral theory of planar tessellations},
url = {http://eudml.org/doc/275368},
volume = {3},
year = {2013},
}

TY - JOUR
AU - Keller, Matthias
TI - An overview of curvature bounds and spectral theory of planar tessellations
JO - Actes des rencontres du CIRM
DA - 2013/11//
PB - CIRM
VL - 3
IS - 1
SP - 61
EP - 68
AB - We give a survey about the spectral consequences of upper bounds on the curvature on planar tessellating graphs. We first discuss spectral bounds and then put a particular focus on uniformly decreasing curvature. This case is characterized by purely discrete spectrum and we further present eigenvalue asymptotics and exponential decay of eigenfunctions. We then discuss absence of compactly supported eigenfunctions and dependence of the spectrum of the Laplacian on the underlying $\ell ^{p}$ space.
LA - eng
UR - http://eudml.org/doc/275368
ER -

References

top
  1. Michael Aizenman, Simone Warzel, The canopy graph and level statistics for random operators on trees, Math. Phys. Anal. Geom. 9 (2006), 291-333 (2007) Zbl1138.47032MR2329431
  2. Frank Bauer, Bobo Hua, Matthias Keller, On the l p spectrum of Laplacians on graphs, Adv. Math. 248 (2013), 717-735 Zbl1283.05162MR3107525
  3. O. Baues, N. Peyerimhoff, Curvature and geometry of tessellating plane graphs, Discrete Comput. Geom. 25 (2001), 141-159 Zbl0963.05031MR1797301
  4. Oliver Baues, Norbert Peyerimhoff, Geodesics in non-positively curved plane tessellations, Adv. Geom. 6 (2006), 243-263 Zbl1098.53034MR2243299
  5. Ethan D. Bloch, A characterization of the angle defect and the Euler characteristic in dimension 2, Discrete Comput. Geom. 43 (2010), 100-120 Zbl1189.52010MR2575322
  6. Michel Bonnefont, Sylvain Golénia, Matthias Keller, Eigenvalue asymptotics for Schrödinger operators on sparse graphs, preprint (2013) Zbl1336.47034
  7. Michel Bonnefont, Sylvain Golénia, Matthias Keller, Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs, preprint (2014) Zbl1336.47034
  8. Jonathan Breuer, Matthias Keller, Spectral analysis of certain spherically homogeneous graphs, Oper. Matrices 7 (2013), 825-847 Zbl06250114MR3154573
  9. Beifang Chen, The Gauss-Bonnet formula of polytopal manifolds and the characterization of embedded graphs with nonnegative curvature, Proc. Amer. Math. Soc. 137 (2009), 1601-1611 Zbl1180.05037MR2470818
  10. Beifang Chen, Guantao Chen, Gauss-Bonnet formula, finiteness condition, and characterizations of graphs embedded in surfaces, Graphs Combin. 24 (2008), 159-183 Zbl1170.05011MR2410938
  11. Matt DeVos, Bojan Mohar, An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s conjecture, Trans. Amer. Math. Soc. 359 (2007), 3287-3300 (electronic) Zbl1117.05026MR2299456
  12. Jozef Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), 787-794 Zbl0512.39001MR743744
  13. Jozef Dodziuk, Leon Karp, Spectral and function theory for combinatorial Laplacians, Geometry of random motion (Ithaca, N.Y., 1987) 73 (1988), 25-40, Amer. Math. Soc., Providence, RI Zbl0669.58031MR954626
  14. Józef Dodziuk, Peter Linnell, Varghese Mathai, Thomas Schick, Stuart Yates, Approximating L 2 -invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (2003), 839-873 Zbl1036.58017MR1990479
  15. Harold Donnelly, Peter Li, Pure point spectrum and negative curvature for noncompact manifolds, Duke Math. J. 46 (1979), 497-503 Zbl0416.58025MR544241
  16. Pasquale Joseph Federico, Descartes on polyhedra, 4 (1982), Springer-Verlag, New York-Berlin Zbl0498.01004MR680214
  17. Koji Fujiwara, Growth and the spectrum of the Laplacian of an infinite graph, Tohoku Math. J. (2) 48 (1996), 293-302 Zbl0857.05070MR1387821
  18. Koji Fujiwara, The Laplacian on rapidly branching trees, Duke Math. J. 83 (1996), 191-202 Zbl0856.58044MR1388848
  19. Sylvain Golénia, Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians, J. Funct. Anal. 266 (2014), 2662-2688 Zbl1292.35300MR3158705
  20. M. Gromov, Hyperbolic groups, Essays in group theory 8 (1987), 75-263, Springer, New York Zbl0634.20015MR919829
  21. Rainer Hempel, Jürgen Voigt, The spectrum of a Schrödinger operator in L p ( R ν ) is p -independent, Comm. Math. Phys. 104 (1986), 243-250 Zbl0593.35033MR836002
  22. Yusuke Higuchi, Combinatorial curvature for planar graphs, J. Graph Theory 38 (2001), 220-229 Zbl0996.05041MR1864922
  23. Bobo Hua, Jürgen Jost, Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature II, to appear in Trans. Amer. Math. Soc. Zbl1307.31016
  24. Bobo Hua, Jürgen Jost, Shiping Liu, Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature, to appear in J. Reine Angew. Math. Zbl1308.05033
  25. M. Ishida, Pseudo-curvature of a graph, lecture at ’Workshop on topological graph theory’, Yokohama National University (1990) 
  26. Matthias Keller, The essential spectrum of the Laplacian on rapidly branching tessellations, Math. Ann. 346 (2010), 51-66 Zbl1285.05115MR2558886
  27. Matthias Keller, Curvature, geometry and spectral properties of planar graphs, Discrete Comput. Geom. 46 (2011), 500-525 Zbl1228.05129MR2826967
  28. Matthias Keller, Daniel Lenz, Agmon type estimates and purely discrete spectrum for graphs, preprint Zbl1252.47090
  29. Matthias Keller, Norbert Peyerimhoff, Cheeger constants, growth and spectrum of locally tessellating planar graphs, Math. Z. 268 (2011), 871-886 Zbl1250.05039MR2818734
  30. Steffen Klassert, Daniel Lenz, Norbert Peyerimhoff, Peter Stollmann, Elliptic operators on planar graphs: unique continuation for eigenfunctions and nonpositive curvature, Proc. Amer. Math. Soc. 134 (2006), 1549-1559 Zbl1094.05016MR2199204
  31. Steffen Klassert, Daniel Lenz, Peter Stollmann, Discontinuities of the integrated density of states for random operators on Delone sets, Comm. Math. Phys. 241 (2003), 235-243 Zbl1098.82016MR2013799
  32. H. P. McKean, An upper bound to the spectrum of Δ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359-366 Zbl0197.18003MR266100
  33. Bojan Mohar, Many large eigenvalues in sparse graphs, European J. Combin. 34 (2013), 1125-1129 Zbl1292.05178MR3055227
  34. Byung-Geun Oh, Duality Properties of Strong Isoperimetric Inequalities on a Planar Graph and Combinatorial Curvatures, Discrete Comput. Geom. 51 (2014), 859-884 Zbl1297.05062MR3216668
  35. Yoshiki Ohno, Hajime Urakawa, On the first eigenvalue of the combinatorial Laplacian for a graph, Interdiscip. Inform. Sci. 1 (1994), 33-46 Zbl0922.05035MR1397822
  36. Barry Simon, Brownian motion, L p properties of Schrödinger operators and the localization of binding, J. Funct. Anal. 35 (1980), 215-229 Zbl0446.47041MR561987
  37. David A. Stone, A combinatorial analogue of a theorem of Myers, Illinois J. Math. 20 (1976), 12-21 Zbl0316.57001MR410602
  38. Karl-Theodor Sturm, On the L p -spectrum of uniformly elliptic operators on Riemannian manifolds, J. Funct. Anal. 118 (1993), 442-453 Zbl0795.58050MR1250269
  39. Liang Sun, Xingxing Yu, Positively curved cubic plane graphs are finite, J. Graph Theory 47 (2004), 241-274 Zbl1055.05038MR2096789
  40. Wolfgang Woess, A note on tilings and strong isoperimetric inequality, Math. Proc. Cambridge Philos. Soc. 124 (1998), 385-393 Zbl0914.05015MR1636552
  41. Radoslaw Krzysztof Wojciechowski, Stochastic completeness of graphs, (2008), ProQuest LLC, Ann Arbor, MI Zbl1221.39008MR2711706
  42. Lili Zhang, A result on combinatorial curvature for embedded graphs on a surface, Discrete Math. 308 (2008), 6588-6595 Zbl1161.05031MR2466966
  43. Andrzej Żuk, On the norms of the random walks on planar graphs, Ann. Inst. Fourier (Grenoble) 47 (1997), 1463-1490 Zbl0897.60079MR1600371

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.