On the norms of the random walks on planar graphs
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 5, page 1463-1490
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topŻuk, Andrzej. "On the norms of the random walks on planar graphs." Annales de l'institut Fourier 47.5 (1997): 1463-1490. <http://eudml.org/doc/75270>.
@article{Żuk1997,
abstract = {We consider the nearest neighbor random walk on planar graphs. For certain families of these graphs, we give explicit upper bounds on the norm of the random walk operator in terms of the minimal number of edges at each vertex. We show that for a wide range of planar graphs the spectral radius of the random walk is less than one.},
author = {Żuk, Andrzej},
journal = {Annales de l'institut Fourier},
keywords = {random walks; norm of the operator; planar graphs; upper bounds},
language = {eng},
number = {5},
pages = {1463-1490},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the norms of the random walks on planar graphs},
url = {http://eudml.org/doc/75270},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Żuk, Andrzej
TI - On the norms of the random walks on planar graphs
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 5
SP - 1463
EP - 1490
AB - We consider the nearest neighbor random walk on planar graphs. For certain families of these graphs, we give explicit upper bounds on the norm of the random walk operator in terms of the minimal number of edges at each vertex. We show that for a wide range of planar graphs the spectral radius of the random walk is less than one.
LA - eng
KW - random walks; norm of the operator; planar graphs; upper bounds
UR - http://eudml.org/doc/75270
ER -
References
top- [1] A. ANCONA, Positive harmonic functions and hyperbolicity. Potential theory, surveys and problems, Lecture Notes in Math., 1344, ed. J. Král et al., Springer, Berlin, 1988, 1-23. Zbl0677.31006MR973878
- [2] L. BARTHOLDI, S. CANTAT, T. CECCHERINI SILBERSTEIN, P. DE LA HARPE, Estimates for simple random walks on fundamental groups of surfaces, Coll. Math., 72, n° 1 (1997), 173-193. Zbl0872.60051MR98d:60133a
- [3] J. CHEEGER, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in Analysis, Ganning (ed.) Princeton Univ. Press., 1970, 195-199. Zbl0212.44903MR53 #6645
- [4] P.A. CHERIX, A. VALETTE, On spectra of simple random walks on one-relator groups, Pacific J. Math. (to appear). Zbl0865.60059
- [5] Y. COLIN DE VERDIÈRE, Spectres de graphes, cours de DEA, Grenoble, 1995.
- [6] J. DODZIUK, Difference Equations, Isoperimetric Inequality and Transience of Certain Random Walks, Trans. Amer. Math. Soc., 284, n° 2 (1984), 787-794. Zbl0512.39001
- [7] V. KAIMANOVICH, Dirichlet norms, capacities and generalized isoperimetric inequalities for Markov operators, Analysis, 1 (1992), 61-82. Zbl1081.31502
- [8] H. KESTEN, Symmetric random walks on groups, Trans. Amer. Math. Soc., 92 (1959), 336-354. Zbl0092.33503MR22 #253
- [9] P. PAPASOGLU, Strongly geodesically automatic groups are hyperbolic, Invent. Math., 121 (1995), 323-334. Zbl0834.20040MR96h:20073
- [10] P.M. SOARDI, Recurrence and transience of the edge graph of a tiling of the Euclidean plane, Math. Ann., 287 (1990), 613-626. Zbl0679.60072MR92b:52044
- [11] R.S. STRICHARTZ, Analysis of the Laplacian on the Complete Riemannian Manifold, Journal of Functional Analysis, 52 (1983), 48-79. Zbl0515.58037MR84m:58138
- [12] W. WOESS, Random walks on infinite graphs and groups — a survey of selected topics, Bull. London Math. Soc., 26 (1994), 1-60. Zbl0830.60061MR94i:60081
- [13] W. WOESS, A note on tilings and strong isoperimetric inequality, preprint, 1996.
- [14] A. ŻUK, A remark on the norms of a random walk on surface groups, Coll. Math., 72, n° 1 (1997), 195-206. Zbl0872.60052MR98d:60133b
- [15] A. ŻUK, A generalized Følner condition and the norms of random walks operators on groups, preprint, 1996. Zbl0990.43001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.