Ariel Shnidman[1]

  • [1] Department of Mathematics Boston College, Chestnut Hill MA 02467 (U.S.A.)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-58
  • ISSN: 0373-0956

How to cite


Shnidman, Ariel. "null." Annales de l’institut Fourier 0.0 (0): 1-58. <http://eudml.org/doc/275370>.

affiliation = {Department of Mathematics Boston College, Chestnut Hill MA 02467 (U.S.A.)},
author = {Shnidman, Ariel},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-58},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275370},
volume = {0},
year = {0},

AU - Shnidman, Ariel
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 58
LA - eng
UR - http://eudml.org/doc/275370
ER -


  1. Massimo Bertolini, Henri Darmon, Kartik Prasanna, Generalized Heegner cycles and p -adic Rankin L -series, Duke Math. J. 162 (2013), 1033-1148 Zbl1302.11043
  2. Massimo Bertolini, Henri Darmon, Kartik Prasanna, Chow-Heegner points on CM elliptic curves and values of p -adic L -functions, Int. Math. Res. Not. IMRN (2014), 745-793 Zbl1326.11026
  3. Spencer Bloch, Kazuya Kato, L -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I 86 (1990), 333-400, Birkhäuser Boston, Boston, MA Zbl0768.14001
  4. F Castella, M Hsieh, Heegner cycles and p -adic L -functions 
  5. Francesc Castella, Heegner cycles and higher weight specializations of big Heegner points, Math. Ann. 356 (2013), 1247-1282 Zbl1322.11054
  6. Pierre Colmez, Fonctions L p -adiques, Astérisque (2000), Exp. No. 851, 3, 21-58 
  7. Brian Conrad, Lifting global representations with local properties Zbl0984.14015
  8. Brian Conrad, Gross-Zagier revisited, Heegner points and Rankin -series 49 (2004), 67-163, Cambridge Univ. Press, Cambridge Zbl1072.11040
  9. F Déglise, W Niziol, On p -adic absolute hodge cohomology and syntomic coefficients, I 
  10. D Disegni, p -adic heights of Heegner points on Shimura curves Zbl06493523
  11. Y Elias, On the Selmer group attached to a modular form and an algebraic Hecke character 
  12. Gerd Faltings, Crystalline cohomology and p -adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (1989), 25-80, Johns Hopkins Univ. Press, Baltimore, MD Zbl0805.14008
  13. Benedict H. Gross, Arithmetic on elliptic curves with complex multiplication, 776 (1980), Springer, Berlin Zbl0433.14032
  14. Benedict H. Gross, Don B. Zagier, Heegner points and derivatives of L -series, Invent. Math. 84 (1986), 225-320 Zbl0608.14019
  15. Haruzo Hida, A p -adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math. 79 (1985), 159-195 Zbl0573.10020
  16. Benjamin Howard, The Iwasawa theoretic Gross-Zagier theorem, Compos. Math. 141 (2005), 811-846 Zbl1207.11072
  17. Ernest Hunter Brooks, Shimura curves and special values of p -adic L -functions, Int. Math. Res. Not. IMRN (2015), 4177-4241 Zbl06471149
  18. Nicholas M. Katz, Barry Mazur, Arithmetic moduli of elliptic curves, 108 (1985), Princeton University Press, Princeton, NJ Zbl0576.14026
  19. Shinichi Kobayashi, The p -adic Gross-Zagier formula for elliptic curves at supersingular primes, Invent. Math. 191 (2013), 527-629 Zbl1300.11053
  20. Y Liu, S Zhang, W Zhang, On p -adic Waldspurger formula 
  21. Toshitsune Miyake, Modular forms, (1989), Springer-Verlag, Berlin Zbl0701.11014
  22. Jan Nekovář, Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math. 107 (1992), 99-125 Zbl0729.14004
  23. Jan Nekovář, On p -adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91 108 (1993), 127-202, Birkhäuser Boston, Boston, MA Zbl0859.11038
  24. Jan Nekovář, On the p -adic height of Heegner cycles, Math. Ann. 302 (1995), 609-686 Zbl0841.11025
  25. Jan Nekovář, p -adic Abel-Jacobi maps and p -adic heights, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) 24 (2000), 367-379, Amer. Math. Soc., Providence, RI Zbl0983.14009
  26. Andrew Ogg, Modular forms and Dirichlet series, (1969), W. A. Benjamin, Inc., New York-Amsterdam Zbl0191.38101
  27. Martin C. Olsson, On Faltings’ method of almost étale extensions, Algebraic geometry—Seattle 2005. Part 2 80 (2009), 811-936, Amer. Math. Soc., Providence, RI Zbl1175.14012
  28. Bernadette Perrin-Riou, Points de Heegner et dérivées de fonctions L p -adiques, Invent. Math. 89 (1987), 455-510 
  29. Bernadette Perrin-Riou, Fonctions L p -adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. London Math. Soc. (2) 38 (1988), 1-32 Zbl0656.10019
  30. Bernadette Perrin-Riou, p -adic L -functions and p -adic representations, 3 (2000), American Mathematical Society, Providence, RI; Société Mathématique de France, Paris 
  31. Denis Petrequin, Classes de Chern et classes de cycles en cohomologie rigide, Bull. Soc. Math. France 131 (2003), 59-121 Zbl1083.14505
  32. David E. Rohrlich, Root numbers of Hecke L -functions of CM fields, Amer. J. Math. 104 (1982), 517-543 Zbl0503.12008
  33. A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), 419-430 Zbl0760.14002
  34. Jean-Pierre Serre, John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517 Zbl0172.46101
  35. Ehud de Shalit, Iwasawa theory of elliptic curves with complex multiplication, 3 (1987), Academic Press, Inc., Boston, MA Zbl0674.12004
  36. Atsushi Shiho, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1-163 Zbl1057.14025
  37. Lynne H. Walling, The Eichler commutation relation for theta series with spherical harmonics, Acta Arith. 63 (1993), 233-254 Zbl0773.11029
  38. A. Wiles, On ordinary λ -adic representations associated to modular forms, Invent. Math. 94 (1988), 529-573 Zbl0664.10013
  39. Shouwu Zhang, Heights of Heegner cycles and derivatives of L -series, Invent. Math. 130 (1997), 99-152 Zbl0882.11029

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.