[unknown]
- [1] Department of Mathematics Boston College, Chestnut Hill MA 02467 (U.S.A.)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-58
- ISSN: 0373-0956
Access Full Article
topHow to cite
topShnidman, Ariel. "null." Annales de l’institut Fourier 0.0 (0): 1-58. <http://eudml.org/doc/275370>.
@article{Shnidman0,
affiliation = {Department of Mathematics Boston College, Chestnut Hill MA 02467 (U.S.A.)},
author = {Shnidman, Ariel},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-58},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275370},
volume = {0},
year = {0},
}
TY - JOUR
AU - Shnidman, Ariel
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 58
LA - eng
UR - http://eudml.org/doc/275370
ER -
References
top- Massimo Bertolini, Henri Darmon, Kartik Prasanna, Generalized Heegner cycles and -adic Rankin -series, Duke Math. J. 162 (2013), 1033-1148 Zbl1302.11043
- Massimo Bertolini, Henri Darmon, Kartik Prasanna, Chow-Heegner points on CM elliptic curves and values of -adic -functions, Int. Math. Res. Not. IMRN (2014), 745-793 Zbl1326.11026
- Spencer Bloch, Kazuya Kato, -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I 86 (1990), 333-400, Birkhäuser Boston, Boston, MA Zbl0768.14001
- F Castella, M Hsieh, Heegner cycles and -adic -functions
- Francesc Castella, Heegner cycles and higher weight specializations of big Heegner points, Math. Ann. 356 (2013), 1247-1282 Zbl1322.11054
- Pierre Colmez, Fonctions -adiques, Astérisque (2000), Exp. No. 851, 3, 21-58
- Brian Conrad, Lifting global representations with local properties Zbl0984.14015
- Brian Conrad, Gross-Zagier revisited, Heegner points and Rankin -series 49 (2004), 67-163, Cambridge Univ. Press, Cambridge Zbl1072.11040
- F Déglise, W Niziol, On -adic absolute hodge cohomology and syntomic coefficients, I
- D Disegni, -adic heights of Heegner points on Shimura curves Zbl06493523
- Y Elias, On the Selmer group attached to a modular form and an algebraic Hecke character
- Gerd Faltings, Crystalline cohomology and -adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (1989), 25-80, Johns Hopkins Univ. Press, Baltimore, MD Zbl0805.14008
- Benedict H. Gross, Arithmetic on elliptic curves with complex multiplication, 776 (1980), Springer, Berlin Zbl0433.14032
- Benedict H. Gross, Don B. Zagier, Heegner points and derivatives of -series, Invent. Math. 84 (1986), 225-320 Zbl0608.14019
- Haruzo Hida, A -adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math. 79 (1985), 159-195 Zbl0573.10020
- Benjamin Howard, The Iwasawa theoretic Gross-Zagier theorem, Compos. Math. 141 (2005), 811-846 Zbl1207.11072
- Ernest Hunter Brooks, Shimura curves and special values of -adic -functions, Int. Math. Res. Not. IMRN (2015), 4177-4241 Zbl06471149
- Nicholas M. Katz, Barry Mazur, Arithmetic moduli of elliptic curves, 108 (1985), Princeton University Press, Princeton, NJ Zbl0576.14026
- Shinichi Kobayashi, The -adic Gross-Zagier formula for elliptic curves at supersingular primes, Invent. Math. 191 (2013), 527-629 Zbl1300.11053
- Y Liu, S Zhang, W Zhang, On -adic Waldspurger formula
- Toshitsune Miyake, Modular forms, (1989), Springer-Verlag, Berlin Zbl0701.11014
- Jan Nekovář, Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math. 107 (1992), 99-125 Zbl0729.14004
- Jan Nekovář, On -adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91 108 (1993), 127-202, Birkhäuser Boston, Boston, MA Zbl0859.11038
- Jan Nekovář, On the -adic height of Heegner cycles, Math. Ann. 302 (1995), 609-686 Zbl0841.11025
- Jan Nekovář, -adic Abel-Jacobi maps and -adic heights, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) 24 (2000), 367-379, Amer. Math. Soc., Providence, RI Zbl0983.14009
- Andrew Ogg, Modular forms and Dirichlet series, (1969), W. A. Benjamin, Inc., New York-Amsterdam Zbl0191.38101
- Martin C. Olsson, On Faltings’ method of almost étale extensions, Algebraic geometry—Seattle 2005. Part 2 80 (2009), 811-936, Amer. Math. Soc., Providence, RI Zbl1175.14012
- Bernadette Perrin-Riou, Points de Heegner et dérivées de fonctions -adiques, Invent. Math. 89 (1987), 455-510
- Bernadette Perrin-Riou, Fonctions -adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. London Math. Soc. (2) 38 (1988), 1-32 Zbl0656.10019
- Bernadette Perrin-Riou, -adic -functions and -adic representations, 3 (2000), American Mathematical Society, Providence, RI; Société Mathématique de France, Paris
- Denis Petrequin, Classes de Chern et classes de cycles en cohomologie rigide, Bull. Soc. Math. France 131 (2003), 59-121 Zbl1083.14505
- David E. Rohrlich, Root numbers of Hecke -functions of CM fields, Amer. J. Math. 104 (1982), 517-543 Zbl0503.12008
- A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), 419-430 Zbl0760.14002
- Jean-Pierre Serre, John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517 Zbl0172.46101
- Ehud de Shalit, Iwasawa theory of elliptic curves with complex multiplication, 3 (1987), Academic Press, Inc., Boston, MA Zbl0674.12004
- Atsushi Shiho, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1-163 Zbl1057.14025
- Lynne H. Walling, The Eichler commutation relation for theta series with spherical harmonics, Acta Arith. 63 (1993), 233-254 Zbl0773.11029
- A. Wiles, On ordinary -adic representations associated to modular forms, Invent. Math. 94 (1988), 529-573 Zbl0664.10013
- Shouwu Zhang, Heights of Heegner cycles and derivatives of -series, Invent. Math. 130 (1997), 99-152 Zbl0882.11029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.