Equidistribution in S -arithmetic and adelic spaces

Antonin Guilloux

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 5, page 1023-1048
  • ISSN: 0240-2963

Abstract

top
We give an introduction to adelic mixing and its applications for mathematicians knowing about the mixing of the geodesic flow on hyperbolic surfaces. We focus on the example of the Hecke trees in the modular surface.

How to cite

top

Guilloux, Antonin. "Equidistribution in $S$-arithmetic and adelic spaces." Annales de la faculté des sciences de Toulouse Mathématiques 23.5 (2014): 1023-1048. <http://eudml.org/doc/275384>.

@article{Guilloux2014,
abstract = {We give an introduction to adelic mixing and its applications for mathematicians knowing about the mixing of the geodesic flow on hyperbolic surfaces. We focus on the example of the Hecke trees in the modular surface.},
author = {Guilloux, Antonin},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Hecke correspondence; Hecke spheres; adelic mixing; equidistribution of spheres},
language = {eng},
number = {5},
pages = {1023-1048},
publisher = {Université Paul Sabatier, Toulouse},
title = {Equidistribution in $S$-arithmetic and adelic spaces},
url = {http://eudml.org/doc/275384},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Guilloux, Antonin
TI - Equidistribution in $S$-arithmetic and adelic spaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 5
SP - 1023
EP - 1048
AB - We give an introduction to adelic mixing and its applications for mathematicians knowing about the mixing of the geodesic flow on hyperbolic surfaces. We focus on the example of the Hecke trees in the modular surface.
LA - eng
KW - Hecke correspondence; Hecke spheres; adelic mixing; equidistribution of spheres
UR - http://eudml.org/doc/275384
ER -

References

top
  1. Aka (M.) and Shapira (U.).— On the evolution of continued fractions in a fixed quadratic field. arXiv preprint arXiv:1201.1280 (2012). 
  2. Benoist (Y.) and Quint (J.-F.).— Mesures stationnaires et fermés invariants des espaces homognes. Ann. of Math. (2), 174(2), p. 1111-1162 (2011). Zbl1241.22007MR2831114
  3. Clozel (L.).— Démonstration de la conjecture τ . Invent. Math., 151(2), p. 297-328 (2003). Zbl1025.11012MR1953260
  4. Clozel (L.), Oh (H.), and Ullmo (E.).— Hecke operators and equidistribution of Hecke points. Invent. Math., 144(2), p. 327-351 (2001). Zbl1144.11301MR1827734
  5. Duke (W.), Rudnick (Z.), and Sarnak (P.).— Density of integer points on affine homogeneous varieties. Duke Math. J., 71(1), p. 143-179 (1993). Zbl0798.11024MR1230289
  6. Dani (S. G.) and Smillie (J.).— Uniform distribution of horocycle orbits for Fuchsian groups. Duke Math. J., 51(1), p. 185-194 (1984). Zbl0547.20042MR744294
  7. Einsiedler (M.), Katok (A.), and Lindenstrauss (E.).— Invariant measures and the set of exceptions to LittlewoodÕs conjecture. Ann. of Math. (2), 164(2), p. 513-560 (2006). Zbl1109.22004MR2247967
  8. Einsiedler (M.), Lindenstrauss (E.), Michel (P.), and Venkatesh (A.).— Distribution of periodic torus orbits and DukeÕs theorem for cubic fields. Ann. of Math. (2), 173(2), p. 815-885 (2011). Zbl1248.37009MR2776363
  9. Eskin (A.) and McMullen (C.).— Mixing, counting, and equidistribution in Lie groups. Duke Math. J., 71(1), p. 181-209 (1993). Zbl0798.11025MR1230290
  10. Eskin (A.), Mozes (S.), and Shah (N.).— Unipotent flows and counting lattice points on homogeneous varieties. Ann. of Math. (2), 143(2), p. 253-299 (1996). Zbl0852.11054MR1381987
  11. Eskin (A.) and Oh (H.).— Ergodic theoretic proof of equidistribution of Hecke points. Ergodic Theory Dynam. Systems, 26(1), p. 163-167 (2006). Zbl1092.11023MR2201942
  12. Goldstein (D.) and Mayer (A.).— On the equidistribution of Hecke points. Forum Math., 15(2), p. 165-189 (2003). Zbl1048.11057MR1956962
  13. Gorodnik (A.), Maucourant (F.), and Oh (H.).— Manin’s and Peyre’s conjectures on rational points and adelic mixing. Ann. Sci. Éc. Norm. Supér. (4), 41(3), p. 383-435 (2008). Zbl1161.14015MR2482443
  14. Guilloux (A.).— Existence et équidistribution des matrices de dénominateur n dans les groupes unitaires et orthogonaux. Ann. Inst. Fourier (Grenoble), 58(4), p. 1185-1212 (2008). Zbl1149.11017MR2427958
  15. Guilloux (A.).— A brief remark on orbits of SL ( 2 , ) in the Euclidean plane. Ergodic Theory Dynam. Systems, 30(4), p. 1101-1109 (2010). Zbl1203.37010MR2669411
  16. Guilloux (A.).— Polynomial dynamic and lattice orbits in S-arithmetic homogeneous spaces. Confluentes Math., 2(1), p. 1-35 (2010). Zbl1193.37007MR2649235
  17. Gorodnik (A.) and Weiss (B.).— Distribution of lattice orbits on homogeneous varieties. Geom. Funct. Anal., 17(1), p. 58-115 (2007). Zbl1112.37001MR2306653
  18. Ledrappier (F.).— Distribution des orbites des réseaux sur le plan réel. C. R. Acad. Sci. Paris Sér. I Math., 329(1), p. 61-64 (1999). Zbl0928.22012MR1703338
  19. Linnik (Yu. V.).— Ergodic properties of algebraic fields. Translated from the Russian by M. S. Keane. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 45. Springer-Verlag New York Inc., New York (1968). Zbl0162.06801MR238801
  20. Lindenstrauss (E.).— Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. (2), 163(1), p. 165-219 (2006). Zbl1104.22015MR2195133
  21. Margulis (G. A.).— Certain applications of ergodic theory to the investigation of manifolds of negative curvature. Func. Anal. Appl., 4, p. 333-335 (1969). Zbl0207.20305MR257933
  22. Maucourant (F.).— Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices. Duke Math. J., 136(2), p. 357-399 (2007). Zbl1117.22006MR2286635
  23. Margulis (G. A.) and Tomanov (G. M.).— Invariant measures for actions of unipotent groups over local fields on homogeneous spaces. Invent. Math., 116(1-3), p. 347-392 (1994). Zbl0816.22004MR1253197
  24. Maucourant (F.) and Weiss (B.).— Lattice actions on the plane revisited. Geom. Dedicata, 157, p. 1-21 (2012). Zbl1252.37004MR2893477
  25. Nogueira (A.).— Orbit distribution on R 2 under the natural action of SL(2; Z ). Indag. Math. (N.S.), 13(1), p. 103-124 (2002). Zbl1016.37003MR2014978
  26. Platonov (V.) and Rapinchuk (A.).— Algebraic groups and number theory, volume 139 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA (1994). Translated from the 1991 Russian original by Rachel Rowen. Zbl0841.20046MR1278263
  27. Ratner (M.).— Invariant measures and orbit closures for unipotent actions on homogeneous spaces. Geom. Funct. Anal., 4(2), p. 236-257 (1994). Zbl0801.22008MR1262705
  28. Sarnak (P. C.).— Diophantine problems and linear groups. In Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 459-471, Tokyo (1991). Math. Soc. Japan. Zbl0743.11018MR1159234
  29. Serre (J.-P.).— A course in arithmetic. Springer-Verlag, New York (1973). Translated from the French, Graduate Texts in Mathematics, No. 7. Zbl0256.12001MR344216
  30. Serre (J.-P.).— Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2003). Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation. Zbl1013.20001MR607504
  31. Skubenko (B. F.).— The asymptotic distribution of integers on a hyperboloid of one sheet and ergodic theorems. Izv. Akad. Nauk SSSR Ser. Mat., 26, p. 721-752 (1962). Zbl0107.04201MR151436

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.