[unknown]

Frédéric Bayart[1]; Hervé Queffélec[2]; Kristian Seip[3]

  • [1] Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques, BP 10448 63000 Clermont-Ferrand (France) CNRS, UMR 6620 Laboratoire de Mathématiques 63177 Aubière (France)
  • [2] Université Lille Nord de France, USTL Laboratoire Paul Painlevé UMR. CNRS 8524, 59 655 Villeneuve d’Ascq Cedex (France)
  • [3] Department of Mathematical Sciences Norwegian University of Science and Technology 7491 Trondheim (Norway)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-38
  • ISSN: 0373-0956

How to cite

top

Bayart, Frédéric, Queffélec, Hervé, and Seip, Kristian. "null." Annales de l’institut Fourier 0.0 (0): 1-38. <http://eudml.org/doc/275391>.

@article{Bayart0,
affiliation = {Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques, BP 10448 63000 Clermont-Ferrand (France) CNRS, UMR 6620 Laboratoire de Mathématiques 63177 Aubière (France); Université Lille Nord de France, USTL Laboratoire Paul Painlevé UMR. CNRS 8524, 59 655 Villeneuve d’Ascq Cedex (France); Department of Mathematical Sciences Norwegian University of Science and Technology 7491 Trondheim (Norway)},
author = {Bayart, Frédéric, Queffélec, Hervé, Seip, Kristian},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-38},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275391},
volume = {0},
year = {0},
}

TY - JOUR
AU - Bayart, Frédéric
AU - Queffélec, Hervé
AU - Seip, Kristian
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 38
LA - eng
UR - http://eudml.org/doc/275391
ER -

References

top
  1. Alexandru Aleman, Jan-Fredrik Olsen, Eero Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN (2014), 4368-4378 Zbl1303.42009
  2. Frédéric Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203-236 Zbl1076.46017
  3. Frédéric Bayart, Compact composition operators on a Hilbert space of Dirichlet series, Illinois J. Math. 47 (2003), 725-743 Zbl1059.47023
  4. Bo Berndtsson, Sun-Yung A. Chang, Kai-Ching Lin, Interpolating sequences in the polydisc, Trans. Amer. Math. Soc. 302 (1987), 161-169 Zbl0638.42021
  5. Bernd Carl, Irmtraud Stephani, Entropy, compactness and the approximation of operators, 98 (1990), Cambridge University Press, Cambridge Zbl0705.47017
  6. Brian J. Cole, T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112-142 Zbl0624.46032
  7. Joe Diestel, Hans Jarchow, Andrew Tonge, Absolutely summing operators, 43 (1995), Cambridge University Press, Cambridge Zbl0855.47016
  8. Samuel E. Ebenstein, Some H p spaces which are uncomplemented in L p , Pacific J. Math. 43 (1972), 327-339 Zbl0281.42017
  9. Julia Gordon, Håkan Hedenmalm, The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J. 46 (1999), 313-329 Zbl0963.47021
  10. Håkan Hedenmalm, Peter Lindqvist, Kristian Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L 2 ( 0 , 1 ) , Duke Math. J. 86 (1997), 1-37 Zbl0887.46008
  11. Henry Helson, Conjugate series and a theorem of Paley, Pacific J. Math. 8 (1958), 437-446 Zbl0117.29702
  12. W. B. Johnson, H. König, B. Maurey, J. R. Retherford, Eigenvalues of p -summing and l p -type operators in Banach spaces, J. Funct. Anal. 32 (1979), 353-380 Zbl0408.47019
  13. Paul Koosis, Introduction to H p spaces, 115 (1998), Cambridge University Press, Cambridge Zbl1024.30001
  14. Daniel Li, Hervé Queffélec, Introduction à l’étude des espaces de Banach, 12 (2004), Société Mathématique de France, Paris Zbl1078.46001
  15. Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza, On approximation numbers of composition operators, J. Approx. Theory 164 (2012), 431-459 Zbl1246.47007
  16. Bernard Maurey, Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90 Zbl0344.47014
  17. H. L. Montgomery, R. C. Vaughan, Hilbert’s inequality, J. London Math. Soc. (2) 8 (1974), 73-82 Zbl0281.10021
  18. Jan-Fredrik Olsen, Local properties of Hilbert spaces of Dirichlet series, J. Funct. Anal. 261 (2011), 2669-2696 Zbl1236.46022
  19. Jan-Fredrik Olsen, Eero Saksman, On the boundary behaviour of the Hardy spaces of Dirichlet series and a frame bound estimate, J. Reine Angew. Math. 663 (2012), 33-66 Zbl1239.46020
  20. Albrecht Pietsch, s -numbers of operators in Banach spaces, Studia Math. 51 (1974), 201-223 Zbl0294.47018
  21. Albrecht Pietsch, Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann. 247 (1980), 149-168 Zbl0428.47027
  22. Albrecht Pietsch, Eigenvalues and s -numbers, 13 (1987), Cambridge University Press, Cambridge Zbl0615.47019
  23. G. Pisier, Sur les espaces de Banach K -convexes, Seminar on Functional Analysis, 1979–1980 (French) (1980), École Polytech., Palaiseau 
  24. Hervé Queffélec, Kristian Seip, Approximation numbers of composition operators on the H 2 space of Dirichlet series, J. Funct. Anal. 268 (2015), 1612-1648 Zbl1308.47032
  25. Hervé Queffélec, Kristian Seip, Decay rates for approximation numbers of composition operators, J. Anal. Math. 125 (2015), 371-399 Zbl1316.47022
  26. Walter Rudin, Fourier analysis on groups, (1962), Interscience Publishers (a division of John Wiley and Sons), New York-London Zbl0105.09504
  27. Eero Saksman, Private communication 
  28. Eero Saksman, Kristian Seip, Integral means and boundary limits of Dirichlet series, Bull. Lond. Math. Soc. 41 (2009), 411-422 Zbl1180.30002
  29. Kristian Seip, Interpolation by Dirichlet series in H , Linear and complex analysis 226 (2009), 153-164, Amer. Math. Soc., Providence, RI Zbl1183.30005
  30. Kristian Seip, Zeros of functions in Hilbert spaces of Dirichlet series, Math. Z. 274 (2013), 1327-1339 Zbl1281.30005
  31. H. S. Shapiro, A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513-532 Zbl0112.29701
  32. Joel H. Shapiro, Composition operators and classical function theory, (1993), Springer-Verlag, New York Zbl0791.30033
  33. Shinji Yamashita, Criteria for functions to be of Hardy class H p , Proc. Amer. Math. Soc. 75 (1979), 69-72 Zbl0408.30040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.