[unknown]
Frédéric Bayart[1]; Hervé Queffélec[2]; Kristian Seip[3]
- [1] Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques, BP 10448 63000 Clermont-Ferrand (France) CNRS, UMR 6620 Laboratoire de Mathématiques 63177 Aubière (France)
- [2] Université Lille Nord de France, USTL Laboratoire Paul Painlevé UMR. CNRS 8524, 59 655 Villeneuve d’Ascq Cedex (France)
- [3] Department of Mathematical Sciences Norwegian University of Science and Technology 7491 Trondheim (Norway)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-38
- ISSN: 0373-0956
Access Full Article
topHow to cite
topBayart, Frédéric, Queffélec, Hervé, and Seip, Kristian. "null." Annales de l’institut Fourier 0.0 (0): 1-38. <http://eudml.org/doc/275391>.
@article{Bayart0,
affiliation = {Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques, BP 10448 63000 Clermont-Ferrand (France) CNRS, UMR 6620 Laboratoire de Mathématiques 63177 Aubière (France); Université Lille Nord de France, USTL Laboratoire Paul Painlevé UMR. CNRS 8524, 59 655 Villeneuve d’Ascq Cedex (France); Department of Mathematical Sciences Norwegian University of Science and Technology 7491 Trondheim (Norway)},
author = {Bayart, Frédéric, Queffélec, Hervé, Seip, Kristian},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-38},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275391},
volume = {0},
year = {0},
}
TY - JOUR
AU - Bayart, Frédéric
AU - Queffélec, Hervé
AU - Seip, Kristian
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 38
LA - eng
UR - http://eudml.org/doc/275391
ER -
References
top- Alexandru Aleman, Jan-Fredrik Olsen, Eero Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN (2014), 4368-4378 Zbl1303.42009
- Frédéric Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203-236 Zbl1076.46017
- Frédéric Bayart, Compact composition operators on a Hilbert space of Dirichlet series, Illinois J. Math. 47 (2003), 725-743 Zbl1059.47023
- Bo Berndtsson, Sun-Yung A. Chang, Kai-Ching Lin, Interpolating sequences in the polydisc, Trans. Amer. Math. Soc. 302 (1987), 161-169 Zbl0638.42021
- Bernd Carl, Irmtraud Stephani, Entropy, compactness and the approximation of operators, 98 (1990), Cambridge University Press, Cambridge Zbl0705.47017
- Brian J. Cole, T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112-142 Zbl0624.46032
- Joe Diestel, Hans Jarchow, Andrew Tonge, Absolutely summing operators, 43 (1995), Cambridge University Press, Cambridge Zbl0855.47016
- Samuel E. Ebenstein, Some spaces which are uncomplemented in , Pacific J. Math. 43 (1972), 327-339 Zbl0281.42017
- Julia Gordon, Håkan Hedenmalm, The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J. 46 (1999), 313-329 Zbl0963.47021
- Håkan Hedenmalm, Peter Lindqvist, Kristian Seip, A Hilbert space of Dirichlet series and systems of dilated functions in , Duke Math. J. 86 (1997), 1-37 Zbl0887.46008
- Henry Helson, Conjugate series and a theorem of Paley, Pacific J. Math. 8 (1958), 437-446 Zbl0117.29702
- W. B. Johnson, H. König, B. Maurey, J. R. Retherford, Eigenvalues of -summing and -type operators in Banach spaces, J. Funct. Anal. 32 (1979), 353-380 Zbl0408.47019
- Paul Koosis, Introduction to spaces, 115 (1998), Cambridge University Press, Cambridge Zbl1024.30001
- Daniel Li, Hervé Queffélec, Introduction à l’étude des espaces de Banach, 12 (2004), Société Mathématique de France, Paris Zbl1078.46001
- Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza, On approximation numbers of composition operators, J. Approx. Theory 164 (2012), 431-459 Zbl1246.47007
- Bernard Maurey, Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90 Zbl0344.47014
- H. L. Montgomery, R. C. Vaughan, Hilbert’s inequality, J. London Math. Soc. (2) 8 (1974), 73-82 Zbl0281.10021
- Jan-Fredrik Olsen, Local properties of Hilbert spaces of Dirichlet series, J. Funct. Anal. 261 (2011), 2669-2696 Zbl1236.46022
- Jan-Fredrik Olsen, Eero Saksman, On the boundary behaviour of the Hardy spaces of Dirichlet series and a frame bound estimate, J. Reine Angew. Math. 663 (2012), 33-66 Zbl1239.46020
- Albrecht Pietsch, -numbers of operators in Banach spaces, Studia Math. 51 (1974), 201-223 Zbl0294.47018
- Albrecht Pietsch, Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann. 247 (1980), 149-168 Zbl0428.47027
- Albrecht Pietsch, Eigenvalues and -numbers, 13 (1987), Cambridge University Press, Cambridge Zbl0615.47019
- G. Pisier, Sur les espaces de Banach -convexes, Seminar on Functional Analysis, 1979–1980 (French) (1980), École Polytech., Palaiseau
- Hervé Queffélec, Kristian Seip, Approximation numbers of composition operators on the space of Dirichlet series, J. Funct. Anal. 268 (2015), 1612-1648 Zbl1308.47032
- Hervé Queffélec, Kristian Seip, Decay rates for approximation numbers of composition operators, J. Anal. Math. 125 (2015), 371-399 Zbl1316.47022
- Walter Rudin, Fourier analysis on groups, (1962), Interscience Publishers (a division of John Wiley and Sons), New York-London Zbl0105.09504
- Eero Saksman, Private communication
- Eero Saksman, Kristian Seip, Integral means and boundary limits of Dirichlet series, Bull. Lond. Math. Soc. 41 (2009), 411-422 Zbl1180.30002
- Kristian Seip, Interpolation by Dirichlet series in , Linear and complex analysis 226 (2009), 153-164, Amer. Math. Soc., Providence, RI Zbl1183.30005
- Kristian Seip, Zeros of functions in Hilbert spaces of Dirichlet series, Math. Z. 274 (2013), 1327-1339 Zbl1281.30005
- H. S. Shapiro, A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513-532 Zbl0112.29701
- Joel H. Shapiro, Composition operators and classical function theory, (1993), Springer-Verlag, New York Zbl0791.30033
- Shinji Yamashita, Criteria for functions to be of Hardy class , Proc. Amer. Math. Soc. 75 (1979), 69-72 Zbl0408.30040
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.