Freeness of hyperplane arrangements and related topics

Masahiko Yoshinaga

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 2, page 483-512
  • ISSN: 0240-2963

Abstract

top
These are the expanded notes of the lecture by the author in “Arrangements in Pyrénées”, June 2012. We are discussing relations of freeness and splitting problems of vector bundles, several techniques proving freeness of hyperplane arrangements, K. Saito’s theory of primitive derivations for Coxeter arrangements, their application to combinatorial problems and related conjectures.

How to cite

top

Yoshinaga, Masahiko. "Freeness of hyperplane arrangements and related topics." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 483-512. <http://eudml.org/doc/275395>.

@article{Yoshinaga2014,
abstract = {These are the expanded notes of the lecture by the author in “Arrangements in Pyrénées”, June 2012. We are discussing relations of freeness and splitting problems of vector bundles, several techniques proving freeness of hyperplane arrangements, K. Saito’s theory of primitive derivations for Coxeter arrangements, their application to combinatorial problems and related conjectures.},
author = {Yoshinaga, Masahiko},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {hyperplane arrangements; Coxeter arrangements; vector bundles},
language = {eng},
month = {3},
number = {2},
pages = {483-512},
publisher = {Université Paul Sabatier, Toulouse},
title = {Freeness of hyperplane arrangements and related topics},
url = {http://eudml.org/doc/275395},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Yoshinaga, Masahiko
TI - Freeness of hyperplane arrangements and related topics
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 483
EP - 512
AB - These are the expanded notes of the lecture by the author in “Arrangements in Pyrénées”, June 2012. We are discussing relations of freeness and splitting problems of vector bundles, several techniques proving freeness of hyperplane arrangements, K. Saito’s theory of primitive derivations for Coxeter arrangements, their application to combinatorial problems and related conjectures.
LA - eng
KW - hyperplane arrangements; Coxeter arrangements; vector bundles
UR - http://eudml.org/doc/275395
ER -

References

top
  1. Abe (T.).— Exponents of 2-multiarrangements and freeness of 3-arrangements. to appear in J. Alg. Combin. Zbl1284.52022
  2. Abe (T.), Numata (Y.).— Exponents of 2-multiarrangements and multiplicity lattices. J. of Alg. Comb. 35, no. 1, p. 1-17 (2012). Zbl1235.52034MR2873095
  3. Abe (T.), Terao (H.), Wakefield (M.).— The characteristic polynomial of a multiarrangement, Adv. in Math. 215, p. 825-838 (2007). Zbl1123.52012MR2355609
  4. Abe (T.), Yoshinaga (M.).— Splitting criterion for reflexive sheaves. Proc. Amer. Math. Soc. 136, no. 6, p. 1887-1891 (2008). Zbl1139.14034MR2383493
  5. Abe (T.), Yoshinaga (M.).— Coxeter multiarrangements with quasi-constant multiplicities. J. Algebra 322, no. 8, p. 2839-2847 (2009). Zbl1185.52021MR2560905
  6. Abe (T.), Yoshinaga (M.).— Free arrangements and coefficients of characteristic polynomials. arXiv:1109.0668, Preprint Zbl1286.32015MR3127042
  7. Athanasiadis (C.A.).— Deformations of Coxeter hyperplane arrangements and their characteristic polynomials. Arrangements–Tokyo (1998), p. 1-26, Adv. Stud. Pure Math., 27, Kinokuniya, Tokyo (2000). Zbl0976.32016MR1796891
  8. Athanasiadis (C.A.).— Extended Linial hyperplane arrangements for root systems and a conjecture of Postnikov and Stanley. J. Algebraic Combin. 10, no. 3, p. 207-225 (1999). Zbl0948.52012MR1723184
  9. Athanasiadis (C.A.).— Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes. Bull. London Math. Soc. 36, no. 3, p. 294-302 (2004). Zbl1068.20038MR2038717
  10. Bertone (C.), M. Roggero (M.).— Splitting type, global sections and Chern classes for torsion free sheaves on P n . J. Korean Math. Soc. 47, no. 6, p. 1147-1165 (2010). Zbl1213.14032MR2744204
  11. Chevalley (C.).— Invariants of finite groups generated by reflections. Amer. J. Math. 77, p. 778-782 (1955). Zbl0065.26103MR72877
  12. Edelman (P. H.), Reiner (V.).— Free arrangements and rhombic tilings. Discrete Comput. Geom. 15, no. 3, p. 307-340 (1996). Zbl0853.52013MR1380397
  13. Edelman (P. H.), Reiner (V.).— Not all free arrangements are K ( π , 1 ) . Bull. Amer. Math. Soc. (N.S.) 32 p. 61-65 (1995). Zbl0815.52012MR1273396
  14. Elencwajg (G.), Forster (O.).— Bounding cohomology groups of vector bundles on Pn. Math. Ann. 246, no. 3, p. 251-270 (1979/80). Zbl0432.14011MR563404
  15. Gao (R.), Pei (D.), Terao (H.).— The Shi arrangement of the type D . Proc. Japan Acad. Ser. A Math. Sci., 88, p. 41-45 (2012). Zbl1242.32015MR2908622
  16. Hartshorne (R.).— Stable reflexive sheaves. Math. Ann. 254, p. 121-176 (1980). Zbl0431.14004MR597077
  17. Hartshorne (R.).— Algebraic Geometry. Springer GTM 52. Zbl0367.14001MR463157
  18. Headley (P.).— On a family of hyperplane arrangements related to the affine Weyl groups. J. Alg. Comb. 6 p. 331-338 (1997). Zbl0911.52009MR1471893
  19. Mustaţǎ (M.), Schenck (H.).— The module of logarithmic p -forms of a locally free arrangement, J. Algebra 241, p. 699-719 (2001). Zbl1047.14007MR1843320
  20. Okonek (C.), Schneider (M.), Spindler (H.).— Vector bundles on complex projective spaces. Progress in Mathematics, 3. Birkhäuser, Boston, Mass. (1980). (Revised version). Zbl0438.32016MR561910
  21. Orlik (P.), Solomon (L.).— Combinatorics and topology of complements of hyperplanes. Invent. Math. 56, no. 2, p. 167-189 (1980). Zbl0432.14016MR558866
  22. Orlik (P.) and Terao (H.).— Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin, 1992. xviii+325 pp. Zbl0757.55001MR1217488
  23. Postnikov (A.), Stanley (R.).— Deformations of Coxeter hyperplane arrangements. J. Combin. Theory Ser. A 91, no. 1-2, p. 544-597 (2000). Zbl0962.05004MR1780038
  24. Saito (K.).— Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, no. 2, p. 265-291 (1980). Zbl0496.32007MR586450
  25. Saito (K.).— Period mapping associated to a primitive form. Publ. Res. Inst. Math. Sci. 19, no. 3, p. 1231-1264 (1983). Zbl0539.58003MR723468
  26. Saito (K.).— On a linear structure of the quotient variety by a finite reflexion group. Publ. Res. Inst. Math. Sci. 29, no. 4, p. 535-579 (1993). Zbl0828.15002MR1245441
  27. Saito (K.).— Uniformization of the orbifold of a finite reflection group. Frobenius manifolds, p. 265-320, Aspects Math., E36, Vieweg, Wiesbaden (2004). Zbl1102.32016MR2115774
  28. Schenck (H.).— A rank two vector bundle associated to a three arrangement, and its Chern polynomial. Adv. Math. 149, no. 2, p. 214-229 (2000). Zbl0977.52029MR1742707
  29. Schenck (H.).— Elementary modifications and line configurations in 2 . Comment. Math. Helv. 78, no. 3, p. 447-462 (2003). Zbl1033.52018MR1998388
  30. Schenck (H.).— S. Tohǎneanu, Freeness of conic-line arrangements in 2 . Comment. Math. Helv. 84, no. 2, p. 235-258 (2009). Zbl1183.52014MR2495794
  31. Schulze (M.).— Freeness and multirestriction of hyperplane arrangements. Compositio Math. 148, p. 799-806 (2012). Zbl1261.14028MR2925399
  32. Silvotti (R.).— On the Poincaré polynomial of a complement of hyperplanes. Math. Res. Lett. 4, no. 5, p. 645-661 (1997). Zbl0910.32009MR1484696
  33. Solomon (L.).— Invariants of finite reflection groups. Nagoya Math. J. 22 p. 57-64 (1963). Zbl0117.27104MR154929
  34. Solomon (L.), Terao (H.).— A formula for the characteristic polynomial of an arrangement. Adv. in Math. 64, no. 3, p. 305-325 (1987). Zbl0625.05001MR888631
  35. Solomon (L.), Terao (H.).— The double Coxeter arrangement. Comm. Math. Helv. 73, p. 237-258 (1998). Zbl0949.52009MR1611699
  36. Suyama (D.).— A basis construction for the Shi arrangement of the type B or C . arXiv:1205.6294 Zbl1315.32006
  37. Suyama (D.), Terao (H.).— The Shi arrangements and the Bernoulli polynomials. To appear in Bull. London Math. Soc. Zbl1251.32022MR2967001
  38. Terao (H.).— Arrangements of hyperplanes and their freeness. I, II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, no. 2, p. 293-320 (1980). Zbl0509.14006MR586451
  39. Terao (H.).— Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula. Invent. Math. 63, no. 1, p. 159-179 (1981). Zbl0437.51002MR608532
  40. Terao (H.).— The exponents of a free hypersurface. Singularities, Part 2 (Arcata, Calif., 561-566 1981), Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI (1983). Zbl0518.32005MR713280
  41. Terao (H.).— Multiderivations of Coxeter arrangements. Invent. Math. 148, no. 3, p. 659-674 (2002). Zbl1032.52013MR1908063
  42. Terao (H.).— The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements. Manuscripta Math. 118, no. 1, p. 1-9 (2005). Zbl1082.32020MR2171289
  43. Wakamiko (A.).— On the Exponents of 2-Multiarrangements. Tokyo J. Math. 30, p. 99-116 (2007). Zbl1130.52010MR2328057
  44. Wakefield (M.), Yuzvinsky (S.).— Derivations of an effective divisor on the complex projective line. Trans. A. M. S. 359, p. 4389-4403 (2007). Zbl1121.52036MR2309190
  45. Yamada (H.).— Lie group theoretical construction of period mapping. Math. Z. 220, no. 2, p. 231-255 (1995). Zbl0843.58052MR1355028
  46. Yoshinaga (M.).— The primitive derivation and freeness of multi-Coxeter arrangements. Proc. Japan Acad., 78, Ser. A, p. 116-119 (2002). Zbl1034.32020MR1930214
  47. Yoshinaga (M.).— Characterization of a free arrangement and conjecture of Edelman and Reiner. Invent. Math. 157, no. 2, p. 449-454 (2004). Zbl1113.52039MR2077250
  48. Yoshinaga (M.).— On the freeness of 3-arrangements. Bull. London Math. Soc. 37, no. 1, p. 126-134 (2005). Zbl1071.52019MR2105827
  49. Yoshinaga (M.).— On the extendability of free multiarrangements. Arrangements, Local Systems and Singularities: CIMPA Summer School, Galatasaray University, Istanbul (2007), p. 273-281, Progress in Mathematics, 283, Birkhäuser, Basel (2009). MR3025868
  50. Yoshinaga (M.).— Arrangements, multiderivations, and adjoint quotient map of type ADE. Arrangements of Hyperplanes–Sapporo 2009, Advanced Studies in Pure Math., vol. 62. Zbl1266.32037
  51. Yuzvinsky (S.).— Cohomology of local sheaves on arrangement lattices. Proc. Amer. Math. Soc. 112, no. 4, p. 1207-1217 (1991). Zbl0758.32014MR1062840
  52. Yuzvinsky (S.).— The first two obstructions to the freeness of arrangements. Trans. Amer. Math. Soc. 335, no. 1, p. 231-244 (1993). Zbl0768.05019MR1089421
  53. Yuzvinsky (S.).— Free and locally free arrangements with a given intersection lattice. Proc. Amer. Math. Soc. 118, no. 3, p. 745-752 (1993). Zbl0797.52009MR1160307
  54. Ziegler (G.).— Multiarrangements of hyperplanes and their freeness. Singularities (Iowa City, IA, 1986), p. 345-359, Contemp. Math., 90, Amer. Math. Soc., Providence, RI (1989). Zbl0678.51010MR1000610
  55. Ziegler (G.).— Matroid representations and free arrangements. Trans. Amer. Math. Soc. 320, no. 2, p. 525-541 (1990). Zbl0727.05019MR986703

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.