Syzygies and logarithmic vector fields along plane curves

Alexandru Dimca[1]; Edoardo Sernesi[2]

  • [1] Université Nice Sophia Antipolis, CNRS, LJAD, UMR 7351 Parc Valrose, 06108 Nice, Cedex 02, France
  • [2] Dipartimento di Matematica e Fisica, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Roma, Italy

Journal de l’École polytechnique — Mathématiques (2014)

  • Volume: 1, page 247-267
  • ISSN: 2270-518X

Abstract

top
We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve C and the stability of the sheaf of logarithmic vector fields along C , the freeness of the divisor C and the Torelli properties of C (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.

How to cite

top

Dimca, Alexandru, and Sernesi, Edoardo. "Syzygies and logarithmic vector fields along plane curves." Journal de l’École polytechnique — Mathématiques 1 (2014): 247-267. <http://eudml.org/doc/275573>.

@article{Dimca2014,
abstract = {We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve $C$ and the stability of the sheaf of logarithmic vector fields along $C$, the freeness of the divisor $C$ and the Torelli properties of $C$ (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.},
affiliation = {Université Nice Sophia Antipolis, CNRS, LJAD, UMR 7351 Parc Valrose, 06108 Nice, Cedex 02, France; Dipartimento di Matematica e Fisica, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Roma, Italy},
author = {Dimca, Alexandru, Sernesi, Edoardo},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Syzygy; plane curve; logarithmic vector fields; stable bundle; free divisor; Torelli property},
language = {eng},
pages = {247-267},
publisher = {École polytechnique},
title = {Syzygies and logarithmic vector fields along plane curves},
url = {http://eudml.org/doc/275573},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Dimca, Alexandru
AU - Sernesi, Edoardo
TI - Syzygies and logarithmic vector fields along plane curves
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 247
EP - 267
AB - We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve $C$ and the stability of the sheaf of logarithmic vector fields along $C$, the freeness of the divisor $C$ and the Torelli properties of $C$ (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.
LA - eng
KW - Syzygy; plane curve; logarithmic vector fields; stable bundle; free divisor; Torelli property
UR - http://eudml.org/doc/275573
ER -

References

top
  1. E. Angelini, Logarithmic bundles of hypersurface arrangements in n , (2013) MR3240995
  2. E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curves. Vol. I, 267 (1985), Springer-Verlag, New York Zbl0559.14017MR770932
  3. V. I. Arnold, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II, 83 (1988), Birkhäuser Boston, Inc., Boston, MA Zbl0659.58002MR966191
  4. R.-O. Buchweitz, A. Conca, New free divisors from old, J. Commut. Algebra 5 (2013), 17-47 Zbl1280.32016MR3084120
  5. A. Dimca, Topics on real and complex singularities, (1987), Friedr. Vieweg & Sohn, Braunschweig Zbl0628.14001MR1013785
  6. A. Dimca, Syzygies of Jacobian ideals and defects of linear systems, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 56(104) (2013), 191-203 Zbl1299.14001MR3098166
  7. A. Dimca, M. Saito, Graded Koszul cohomology and spectrum of certain homogeneous polynomials, (2012) 
  8. A. Dimca, M. Saito, Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary double points, (2014) 
  9. A. Dimca, M. Saito, Some remarks on limit mixed Hodge structures and spectrum, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 22 (2014), 69-78 Zbl06384689MR3195696
  10. A. Dimca, G. Sticlaru, Koszul complexes and pole order filtrations, Proc. Edinburgh Math. Soc. (2) Zbl1329.32014
  11. A. Dimca, G. Sticlaru, Chebyshev curves, free resolutions and rational curve arrangements, Math. Proc. Cambridge Philos. Soc. 153 (2012), 385-397 Zbl1253.14032MR2990622
  12. A. Dimca, G. Sticlaru, Syzygies of Jacobian ideals and weighted homogeneous singularities, (2014) Zbl1333.14037
  13. I. Dolgachev, M. Kapranov, Arrangements of hyperplanes and vector bundles on n , Duke Math. J. 71 (1993), 633-664 Zbl0804.14007MR1240599
  14. M. Granger, D. Mond, A. Nieto-Reyes, M. Schulze, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), 811-850 Zbl1163.32014MR2521436
  15. R. Hartshorne, Algebraic Geometry, 52 (1977), Springer-Verlag Zbl0531.14001MR463157
  16. K. Hulek, Stable rank- 2 vector bundles on 2 with c 1 odd, Math. Ann. 242 (1979), 241-266 Zbl0407.32013MR545217
  17. J. Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995 62 (1997), 221-287, American Mathematical Society, Providence, RI Zbl0905.14002MR1492525
  18. L. Narváez Macarro, Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors, Singularities I 474 (2008), 245-269, Amer. Math. Soc., Providence, RI Zbl1166.32006MR2454351
  19. C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, 3 (1980), Birkhäuser, Boston, Mass. Zbl0438.32016MR561910
  20. P. Orlik, H. Terao, Arrangements of hyperplanes, 300 (1992), Springer-Verlag, Berlin Zbl0757.55001MR1217488
  21. K. Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289-325 Zbl0296.14019MR354669
  22. K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291 Zbl0496.32007MR586450
  23. E. Sernesi, Deformations of algebraic schemes, 334 (2006), Springer-Verlag, Berlin Zbl1102.14001MR2247603
  24. E. Sernesi, The local cohomology of the Jacobian ring, Doc. Math. 19 (2014), 541-565 Zbl1314.14089MR3218781
  25. A. Simis, Ş. O. Tohăneanu, Homology of homogeneous divisors, Israel J. Math. 200 (2014), 449-487 Zbl1327.13051MR3219587
  26. G. Sticlaru, Free divisors versus stability and coincidence thresholds, (2014) 
  27. K. Ueda, M. Yoshinaga, Logarithmic vector fields along smooth divisors in projective spaces, Hokkaido Math. J. 38 (2009), 409-415 Zbl1180.14012MR2548229
  28. J. Vallès, Nombre maximal d’hyperplans instables pour un fibré de Steiner, Math. Z. 233 (2000), 507-514 Zbl0952.14011MR1750934
  29. J. M. Wahl, Deformations of plane curves with nodes and cusps, Amer. J. Math. 96 (1974), 529-577 Zbl0299.14008MR387287
  30. M. Yoshinaga, Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), 483-512 Zbl1295.14049MR3205600

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.