Syzygies and logarithmic vector fields along plane curves
Alexandru Dimca[1]; Edoardo Sernesi[2]
- [1] Université Nice Sophia Antipolis, CNRS, LJAD, UMR 7351 Parc Valrose, 06108 Nice, Cedex 02, France
- [2] Dipartimento di Matematica e Fisica, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Roma, Italy
Journal de l’École polytechnique — Mathématiques (2014)
- Volume: 1, page 247-267
- ISSN: 2270-518X
Access Full Article
topAbstract
topHow to cite
topDimca, Alexandru, and Sernesi, Edoardo. "Syzygies and logarithmic vector fields along plane curves." Journal de l’École polytechnique — Mathématiques 1 (2014): 247-267. <http://eudml.org/doc/275573>.
@article{Dimca2014,
abstract = {We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve $C$ and the stability of the sheaf of logarithmic vector fields along $C$, the freeness of the divisor $C$ and the Torelli properties of $C$ (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.},
affiliation = {Université Nice Sophia Antipolis, CNRS, LJAD, UMR 7351 Parc Valrose, 06108 Nice, Cedex 02, France; Dipartimento di Matematica e Fisica, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Roma, Italy},
author = {Dimca, Alexandru, Sernesi, Edoardo},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Syzygy; plane curve; logarithmic vector fields; stable bundle; free divisor; Torelli property},
language = {eng},
pages = {247-267},
publisher = {École polytechnique},
title = {Syzygies and logarithmic vector fields along plane curves},
url = {http://eudml.org/doc/275573},
volume = {1},
year = {2014},
}
TY - JOUR
AU - Dimca, Alexandru
AU - Sernesi, Edoardo
TI - Syzygies and logarithmic vector fields along plane curves
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 247
EP - 267
AB - We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve $C$ and the stability of the sheaf of logarithmic vector fields along $C$, the freeness of the divisor $C$ and the Torelli properties of $C$ (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.
LA - eng
KW - Syzygy; plane curve; logarithmic vector fields; stable bundle; free divisor; Torelli property
UR - http://eudml.org/doc/275573
ER -
References
top- E. Angelini, Logarithmic bundles of hypersurface arrangements in , (2013) MR3240995
- E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curves. Vol. I, 267 (1985), Springer-Verlag, New York Zbl0559.14017MR770932
- V. I. Arnold, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II, 83 (1988), Birkhäuser Boston, Inc., Boston, MA Zbl0659.58002MR966191
- R.-O. Buchweitz, A. Conca, New free divisors from old, J. Commut. Algebra 5 (2013), 17-47 Zbl1280.32016MR3084120
- A. Dimca, Topics on real and complex singularities, (1987), Friedr. Vieweg & Sohn, Braunschweig Zbl0628.14001MR1013785
- A. Dimca, Syzygies of Jacobian ideals and defects of linear systems, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 56(104) (2013), 191-203 Zbl1299.14001MR3098166
- A. Dimca, M. Saito, Graded Koszul cohomology and spectrum of certain homogeneous polynomials, (2012)
- A. Dimca, M. Saito, Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary double points, (2014)
- A. Dimca, M. Saito, Some remarks on limit mixed Hodge structures and spectrum, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 22 (2014), 69-78 Zbl06384689MR3195696
- A. Dimca, G. Sticlaru, Koszul complexes and pole order filtrations, Proc. Edinburgh Math. Soc. (2) Zbl1329.32014
- A. Dimca, G. Sticlaru, Chebyshev curves, free resolutions and rational curve arrangements, Math. Proc. Cambridge Philos. Soc. 153 (2012), 385-397 Zbl1253.14032MR2990622
- A. Dimca, G. Sticlaru, Syzygies of Jacobian ideals and weighted homogeneous singularities, (2014) Zbl1333.14037
- I. Dolgachev, M. Kapranov, Arrangements of hyperplanes and vector bundles on , Duke Math. J. 71 (1993), 633-664 Zbl0804.14007MR1240599
- M. Granger, D. Mond, A. Nieto-Reyes, M. Schulze, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), 811-850 Zbl1163.32014MR2521436
- R. Hartshorne, Algebraic Geometry, 52 (1977), Springer-Verlag Zbl0531.14001MR463157
- K. Hulek, Stable rank- vector bundles on with odd, Math. Ann. 242 (1979), 241-266 Zbl0407.32013MR545217
- J. Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995 62 (1997), 221-287, American Mathematical Society, Providence, RI Zbl0905.14002MR1492525
- L. Narváez Macarro, Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors, Singularities I 474 (2008), 245-269, Amer. Math. Soc., Providence, RI Zbl1166.32006MR2454351
- C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, 3 (1980), Birkhäuser, Boston, Mass. Zbl0438.32016MR561910
- P. Orlik, H. Terao, Arrangements of hyperplanes, 300 (1992), Springer-Verlag, Berlin Zbl0757.55001MR1217488
- K. Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289-325 Zbl0296.14019MR354669
- K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291 Zbl0496.32007MR586450
- E. Sernesi, Deformations of algebraic schemes, 334 (2006), Springer-Verlag, Berlin Zbl1102.14001MR2247603
- E. Sernesi, The local cohomology of the Jacobian ring, Doc. Math. 19 (2014), 541-565 Zbl1314.14089MR3218781
- A. Simis, Ş. O. Tohăneanu, Homology of homogeneous divisors, Israel J. Math. 200 (2014), 449-487 Zbl1327.13051MR3219587
- G. Sticlaru, Free divisors versus stability and coincidence thresholds, (2014)
- K. Ueda, M. Yoshinaga, Logarithmic vector fields along smooth divisors in projective spaces, Hokkaido Math. J. 38 (2009), 409-415 Zbl1180.14012MR2548229
- J. Vallès, Nombre maximal d’hyperplans instables pour un fibré de Steiner, Math. Z. 233 (2000), 507-514 Zbl0952.14011MR1750934
- J. M. Wahl, Deformations of plane curves with nodes and cusps, Amer. J. Math. 96 (1974), 529-577 Zbl0299.14008MR387287
- M. Yoshinaga, Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), 483-512 Zbl1295.14049MR3205600
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.