Normal surface singularities admitting contracting automorphisms

Charles Favre; Matteo Ruggiero

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 4, page 797-828
  • ISSN: 0240-2963

Abstract

top
We show that a complex normal surface singularity admitting a contracting automorphism is necessarily quasihomogeneous. We also describe the geometry of a compact complex surface arising as the orbit space of such a contracting automorphism.

How to cite

top

Favre, Charles, and Ruggiero, Matteo. "Normal surface singularities admitting contracting automorphisms." Annales de la faculté des sciences de Toulouse Mathématiques 23.4 (2014): 797-828. <http://eudml.org/doc/275399>.

@article{Favre2014,
abstract = {We show that a complex normal surface singularity admitting a contracting automorphism is necessarily quasihomogeneous. We also describe the geometry of a compact complex surface arising as the orbit space of such a contracting automorphism.},
author = {Favre, Charles, Ruggiero, Matteo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {normal surface singularity; contracting automorphism; weighted homogeneous singularity},
language = {eng},
number = {4},
pages = {797-828},
publisher = {Université Paul Sabatier, Toulouse},
title = {Normal surface singularities admitting contracting automorphisms},
url = {http://eudml.org/doc/275399},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Favre, Charles
AU - Ruggiero, Matteo
TI - Normal surface singularities admitting contracting automorphisms
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 4
SP - 797
EP - 828
AB - We show that a complex normal surface singularity admitting a contracting automorphism is necessarily quasihomogeneous. We also describe the geometry of a compact complex surface arising as the orbit space of such a contracting automorphism.
LA - eng
KW - normal surface singularity; contracting automorphism; weighted homogeneous singularity
UR - http://eudml.org/doc/275399
ER -

References

top
  1. Boucksom (S.), de Fernex (T.), Favre (C.).— The volume of an isolated singularity, Duke Math. J., 161(8), p. 1455-1520 (2012). Zbl1251.14026MR2931273
  2. Barth (W. P.), Hulek (K.), Peters (C. A. M.), Antonius Van de Ven.— Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer-Verlag, Berlin, second edition (2004). Zbl1036.14016MR2030225
  3. Bundgaard (S.), Nielsen (J.).— On normal subgroups with finite index in F-groups, Mat. Tidsskr. B., 1951, p. 56-58 (1951). Zbl0044.25403MR48447
  4. Cantat (S.).— Dynamique des automorphismes des surfaces projectives complexes, C. R. Acad. Sci. Paris Sér. I Math., 328(10), p. 901-906 (1999). Zbl0943.37021MR1689873
  5. Camacho (C.), Movasati (H.), Bruno (B.).— The moduli of quasi-homogeneous Stein surface singularities. J. Geom. Anal., 19(2), p. 244-260 (2009). Zbl1186.32007MR2481961
  6. Demailly (J.-P.).— Monge-Ampère operators, Lelong numbers and intersection theory, In Complex analysis and geometry, Univ. Ser. Math., p. 115-193. Plenum, New York (1993). Zbl0792.32006MR1211880
  7. Fox (R. H.).— On Fenchel’s conjecture about F-groups. Mat. Tidsskr. B., 1952, p. 61-65 (1952). Zbl0049.15404MR53937
  8. Furuta (M.), Steer (B.).— Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math., 96(1), p. 38-102 (1992). Zbl0769.58009MR1185787
  9. Gizatullin (M. H.).— Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat., 44(1), p. 110-144, 239 (1980). Zbl0428.14022MR563788
  10. Grauert (H.).— Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146, p. 331-368 (1962). Zbl0173.33004MR137127
  11. Holmann (H.).— Quotientenräume komplexer Mannigfaltigkeiten nach komplexen Lieschen Automorphismengruppen, Math. Ann., 139, p. 383-402 (1960). Zbl0142.05001MR115187
  12. Höring (A.), Peternell (T.).— Non-algebraic compact Kähler threefolds admitting endomorphisms, Sci. China Math., 54(8), p. 1635-1664 (2011). Zbl1241.32014MR2824964
  13. Kato (M.).— Compact complex surfaces containing global strongly pseudoconvex hypersurfaces, Tôhoku Math. J. (2), 31(4), p. 537-547 (1979). Zbl0428.32012MR558683
  14. Laufer (H. B.).— Normal two-dimensional singularities, Princeton University Press, Princeton, N.J. Annals of Mathematics Studies, No. 71 (1971). Zbl0245.32005MR320365
  15. Milnor (J.).— On the concept of attractor, Comm. Math. Phys., 99(2), p. 177-195 (1985). Zbl0595.58028MR790735
  16. Milnor (J.).— Dynamics in one complex variable, volume 160 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, third edition (2006). Zbl1085.30002MR2193309
  17. Müller (G.).— Actions of complex Lie groups on analytic C-algebras, Monatsh. Math., 103(3), p. 221-231 (1987). Zbl0624.32007MR894172
  18. Müller (G.).— Symmetries of surface singularities, J. London Math. Soc. (2), 59(2), p. 491-506 (1999). Zbl0923.14029MR1709181
  19. Müller (G.).— Resolution of weighted homogeneous surface singularities, In Resolution of singularities (Obergurgl, 1997), volume 181 of Progr. Math., p. 507-517. Birkhäuser, Basel (2000). Zbl1024.14006MR1748632
  20. Nakayama (N.).— On complex normal projective surfaces admitting non-isomorphic surjective endomorphisms, Preprint. 
  21. Nakayama (N.), Zhang (D-Q).— Building blocks of étale endomorphisms of complex projective manifolds, Proc. Lond. Math. Soc. (3), 99(3), p. 725-756 (2009). Zbl1185.14012MR2551469
  22. Nakayama (N.), Zhang (D-Q).— Polarized endomorphisms of complex normal varieties, Math. Ann., 346(4), p. 991-1018 (2010). Zbl1189.14043MR2587100
  23. Oda (T.).— Convex bodies and algebraic geometry, volume 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin. An introduction to the theory of toric varieties, Translated from the Japanese (1988). Zbl0628.52002MR922894
  24. Orlik (P.), Wagreich (P.).— Isolated singularities of algebraic surfaces with C * action, Ann. of Math. (2), 93, p. 205-228 (1971). Zbl0212.53702MR284435
  25. Pinkham (H. C.).— Automorphisms of cusps and Inoue-Hirzebruch surfaces, Compositio Math., 52(3), p. 299-313 (1984). Zbl0573.14015MR756724
  26. Rosay (J.-P.), Rudin (W.).— Holomorphic maps from C n to C n , Trans. Amer. Math. Soc., 310(1), p. 47-86 (1988). Zbl0708.58003MR929658
  27. Rashkovskii (A.), Sigurdsson (R.).— Green functions with singularities along complex spaces, Internat. J. Math., 16(4), p. 333-355 (2005). Zbl1085.32018MR2133260
  28. Ross (J.), Thomas (R.).— Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Käher metrics, J. Differential Geom., 88(1), p. 109-159 (2011). Zbl1244.32013MR2819757
  29. Sankaran (G. K.).— Higher-dimensional analogues of Inoue-Hirzebruch surfaces, Math. Ann., 276(3), p. 515-528 (1987). Zbl0595.14031MR875345
  30. Satake (I.).— The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan, 9, p. 464-492 (1957). Zbl0080.37403MR95520
  31. Sánchez-Bringas (F.).— Normal forms of invariant vector fields under a finite group action, Publ. Mat., 37(1), p. 75-82 (1993). Zbl0872.58057MR1240923
  32. Scott (P.).— The geometries of 3-manifolds. Bull, London Math. Soc., 15(5), p. 401-487 (1983). Zbl0561.57001MR705527
  33. Selberg (A.).— On discontinuous groups in higher-dimensional symmetric spaces, In Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), p. 147-164. Tata Institute of Fundamental Research, Bombay (1960). Zbl0201.36603MR130324
  34. Scheja (G.), Wiebe (H.).— Zur Chevalley-Zerlegung von Derivationen, Manuscripta Math., 33(2), p. 159-176 (1980/81). Zbl0511.13015MR597817
  35. Tsuchihashi (H.).— Higher-dimensional analogues of periodic continued fractions and cusp singularities, Tohoku Math. J. (2), 35(4), p. 607-639 (1983). Zbl0585.14004MR721966
  36. Wagreich (P.).— The structure of quasihomogeneous singularities, In Singularities, Part 2 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., p. 593-611. Amer. Math. Soc., Providence, RI (1983). Zbl0545.14028MR713284
  37. Wahl (J.).— A characteristic number for links of surface singularities, J. Amer. Math. Soc., 3(3), p. 625-637 (1990). Zbl0743.14026MR1044058
  38. Zhang (D-Q).— Algebraic varieties with automorphism groups of maximal rank, Math. Ann., 355(1), p. 131-146 (2013). Zbl1262.32019MR3004578

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.