Normal forms of invariant vector fields under a finite group action.
Publicacions Matemàtiques (1993)
- Volume: 37, Issue: 1, page 75-82
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topSánchez-Bringas, Federico. "Normal forms of invariant vector fields under a finite group action.." Publicacions Matemàtiques 37.1 (1993): 75-82. <http://eudml.org/doc/41521>.
@article{Sánchez1993,
abstract = {Let Γ be a finite subgroup of GL(n, C). This subgroup acts on the space of germs of holomorphic vector fields vanishing at the origin in Cn and on the group of germs of holomorphic diffeomorphisms of (Cn, 0). We prove a theorem of invariant conjugacy to a normal form and linearization for the subspace of invariant germs of holomorphic vector fields and we give a description of this type of normal forms in dimension n = 2.},
author = {Sánchez-Bringas, Federico},
journal = {Publicacions Matemàtiques},
keywords = {Campos vectoriales; Formas normales; Grupos finitos; Subgrupos; holomorphic vector fields; invariant conjugacy; normal form; linearization; invariant germs},
language = {eng},
number = {1},
pages = {75-82},
title = {Normal forms of invariant vector fields under a finite group action.},
url = {http://eudml.org/doc/41521},
volume = {37},
year = {1993},
}
TY - JOUR
AU - Sánchez-Bringas, Federico
TI - Normal forms of invariant vector fields under a finite group action.
JO - Publicacions Matemàtiques
PY - 1993
VL - 37
IS - 1
SP - 75
EP - 82
AB - Let Γ be a finite subgroup of GL(n, C). This subgroup acts on the space of germs of holomorphic vector fields vanishing at the origin in Cn and on the group of germs of holomorphic diffeomorphisms of (Cn, 0). We prove a theorem of invariant conjugacy to a normal form and linearization for the subspace of invariant germs of holomorphic vector fields and we give a description of this type of normal forms in dimension n = 2.
LA - eng
KW - Campos vectoriales; Formas normales; Grupos finitos; Subgrupos; holomorphic vector fields; invariant conjugacy; normal form; linearization; invariant germs
UR - http://eudml.org/doc/41521
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.