# Normal forms of invariant vector fields under a finite group action.

Publicacions Matemàtiques (1993)

- Volume: 37, Issue: 1, page 75-82
- ISSN: 0214-1493

## Access Full Article

top## Abstract

top## How to cite

topSánchez-Bringas, Federico. "Normal forms of invariant vector fields under a finite group action.." Publicacions Matemàtiques 37.1 (1993): 75-82. <http://eudml.org/doc/41521>.

@article{Sánchez1993,

abstract = {Let Γ be a finite subgroup of GL(n, C). This subgroup acts on the space of germs of holomorphic vector fields vanishing at the origin in Cn and on the group of germs of holomorphic diffeomorphisms of (Cn, 0). We prove a theorem of invariant conjugacy to a normal form and linearization for the subspace of invariant germs of holomorphic vector fields and we give a description of this type of normal forms in dimension n = 2.},

author = {Sánchez-Bringas, Federico},

journal = {Publicacions Matemàtiques},

keywords = {Campos vectoriales; Formas normales; Grupos finitos; Subgrupos; holomorphic vector fields; invariant conjugacy; normal form; linearization; invariant germs},

language = {eng},

number = {1},

pages = {75-82},

title = {Normal forms of invariant vector fields under a finite group action.},

url = {http://eudml.org/doc/41521},

volume = {37},

year = {1993},

}

TY - JOUR

AU - Sánchez-Bringas, Federico

TI - Normal forms of invariant vector fields under a finite group action.

JO - Publicacions Matemàtiques

PY - 1993

VL - 37

IS - 1

SP - 75

EP - 82

AB - Let Γ be a finite subgroup of GL(n, C). This subgroup acts on the space of germs of holomorphic vector fields vanishing at the origin in Cn and on the group of germs of holomorphic diffeomorphisms of (Cn, 0). We prove a theorem of invariant conjugacy to a normal form and linearization for the subspace of invariant germs of holomorphic vector fields and we give a description of this type of normal forms in dimension n = 2.

LA - eng

KW - Campos vectoriales; Formas normales; Grupos finitos; Subgrupos; holomorphic vector fields; invariant conjugacy; normal form; linearization; invariant germs

UR - http://eudml.org/doc/41521

ER -