Metric Ricci Curvature and Flow for PL Manifolds

Emil Saucan[1]

  • [1] Department of Mathematics Technion HAIFA 32000 and Department of Mathematics and Computer Science The Open University of Israel RA’ANANA 43537 ISRAEL

Actes des rencontres du CIRM (2013)

  • Volume: 3, Issue: 1, page 119-129
  • ISSN: 2105-0597

Abstract

top
We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.

How to cite

top

Saucan, Emil. "Metric Ricci Curvature and Flow for PL Manifolds." Actes des rencontres du CIRM 3.1 (2013): 119-129. <http://eudml.org/doc/275405>.

@article{Saucan2013,
abstract = {We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.},
affiliation = {Department of Mathematics Technion HAIFA 32000 and Department of Mathematics and Computer Science The Open University of Israel RA’ANANA 43537 ISRAEL},
author = {Saucan, Emil},
journal = {Actes des rencontres du CIRM},
keywords = {Wald-Berestovskii curvature; PL manifold; Ricci curvature; surface Ricci flow; Bonnet-Myers Theorem; fitting; Bonnet-Myers theorem},
language = {eng},
month = {11},
number = {1},
pages = {119-129},
publisher = {CIRM},
title = {Metric Ricci Curvature and Flow for PL Manifolds},
url = {http://eudml.org/doc/275405},
volume = {3},
year = {2013},
}

TY - JOUR
AU - Saucan, Emil
TI - Metric Ricci Curvature and Flow for PL Manifolds
JO - Actes des rencontres du CIRM
DA - 2013/11//
PB - CIRM
VL - 3
IS - 1
SP - 119
EP - 129
AB - We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.
LA - eng
KW - Wald-Berestovskii curvature; PL manifold; Ricci curvature; surface Ricci flow; Bonnet-Myers Theorem; fitting; Bonnet-Myers theorem
UR - http://eudml.org/doc/275405
ER -

References

top
  1. S. B. Alexander, R. L. Bishop, Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above, Differential Geometry and its Applications 6 (1996), 67-86 Zbl0859.53053MR1384880
  2. E. Appleboim, Y. Hyams, S. Krakovski, C. Sageev, E. Saucan, The Scale-Curvature Connection and its Application to Texture Segmentation, Theory and Applications of Mathematics & Computer Science 3 (2013), 38-54 Zbl1288.68236
  3. E. Appleboim, E. Saucan, Y. Y. Zeevi, Ricci Curvature and Flow for Image Denoising and Superesolution, Proceedings of EUSIPCO 2012 (2012), 2743-2747 
  4. V. N. Berestovskii, Spaces with bounded curvature and distance geometry, Siberian Math. J. 16 (1986), 8-19 Zbl0612.53047MR847410
  5. M. Bestvina, Geometric group theory and 3-manifolds hand in hand: the fulfillment of Thurston’s vision, Bull. Amer. Math. Soc. 51 (2014), 53-70 Zbl1286.57013MR3119822
  6. L. M. Blumenthal, Distance Geometry – Theory and Applications, (1953), Claredon Press, Oxford Zbl0050.38502MR54981
  7. L. M. Blumenthal, K. Menger, Studies in Geometry, (1970), Freeman and Co., San Francisco, CA Zbl0204.53401MR273492
  8. U. Brehm, W. Kühnel, Smooth approximation of polyhedral surfaces regarding curvatures, Geometriae Dedicata 12 (1982), 435-461 Zbl0483.53046MR672873
  9. Yu. D. Burago, V. A. Zalgaller, Isometric piecewise linear immersions of two-dimensional manifolds with polyhedral metrics into 3 , St. Petersburg Math. J. 7 (1996), 369-385 Zbl0851.52018MR1353490
  10. B. Chow, The Ricci flow on the 2-sphere, J. Differential Geom. 33 (1991), 325-334 Zbl0734.53033MR1094458
  11. B. Chow, F. Luo, Combinatorial Ricci Flows on Surfaces, J. Differential Geom. 63 (2003), 97-129 Zbl1070.53040MR2015261
  12. J. Giesen, Curve Reconstruction, the Traveling Salesman Problem and Menger’s Theorem on Length, Proceedings of the 15th ACM Symposium on Computational Geometry (SoCG) (1999), 207-216 Zbl0984.65012MR1802207
  13. M. Gromov, W. Thurston, Pinching constants for hyperbolic manifolds, Invent. math. 89 (1987), 1-12 Zbl0646.53037MR892185
  14. D. X. Gu, E. Saucan, Metric Ricci curvature for PL manifolds, Geometry (2013) Zbl1314.53065
  15. X. D. Gu, S.-T. Yau, Computational Conformal Geometry, (2008), Advanced Lectures in Mathematics 3, International Press, Somerville, MA Zbl1144.65008MR2439718
  16. J. Haantjes, Distance geometry. Curvature in abstract metric spaces, Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam 50 (1947), 302-314 Zbl0030.07502MR21325
  17. J. Haantjes, A characteristic local property of geodesics in certain spaces, Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam 54 (1951), 66-73 Zbl0042.40603MR40675
  18. Q. Han, J.-X. Hong, Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, (2006), Mathematical Surveys and Monographs, 130, AMS Providence, RI Zbl1113.53002MR2261749
  19. M. Jin, J. Kim, X. D. Gu, Discrete Surface Ricci Flow: Theory and Applications, LNCS 4647: Mathematics of Surfaces, Springer-Verlag, Berlin (2007), 209-232 Zbl1163.68351
  20. W. A. Kirk, On Curvature of a Metric Space at a Point, Pacific J. Math. 14 (1964), 195-198 Zbl0168.43402MR161289
  21. G. Lerman, J. T. Whitehouse, On d -dimensional d -semimetrics and simplex-type inequalities for high-dimensional sine functions, Journal of Approximation Theory 156 (2009), 52-81 Zbl1170.46025MR2490476
  22. K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae 10 (1927), 96-115 
  23. J. R. Munkres, Elementary Differential Topology (rev. ed.), (1966), Princeton University Press, Princeton, N.J. Zbl0161.20201MR198479
  24. H. Pajot, Analytic Capacity, Rectificabilility, Menger Curvature and the Cauchy Integral, LNM 1799, Springer-Verlag, Berlin (2002), 302-314 Zbl1043.28002MR1952175
  25. C. Plaut, Metric Spaces of Curvature k , Handbook of Geometric Topology (Daverman, R. J. and Sher, R. B., editors) (2002), 819-898 Zbl1011.57002MR1886682
  26. M. Sageev, CAT(0) cube complexes and groups, PCMI Lecture Notes (2013), 1-16 
  27. E. Saucan, On a construction of Burago and Zalgaller, The Asian Journal of Mathematics 16 (2012), 587-606 Zbl1273.57016MR3004279
  28. E. Saucan, A Metric Ricci Flow for Surfaces and its Applications, Geometry, Imaging and Computing 1 (2014), 259-301 Zbl1319.53075
  29. E. Saucan, E. Appleboim, Curvature Based Clustering for DNA Microarray Data Analysis, LNCS 3523, Springer-Verlag, Berlin (2005), 405-412 
  30. E. Saucan, E. Appleboim, Metric Methods in Surface Triangulation, LNCS 5654, Springer-Verlag, Berlin (2009), 335-355 Zbl1259.65047
  31. P. Shvartsman, Sobolev L p 2 -functions on closed subsets of 2 , arXiv:1210.0590 1 (2012) 
  32. D. A. Stone, A combinatorial analogue of a theorem of Myers, Illinois J. Math. 20 (1976), 12-21 Zbl0316.57001MR410602
  33. D. A. Stone, Correction to my paper: “A combinatorial analogue of a theorem of Myers”, Illinois J. Math. 20 (1976), 551-554 Zbl0323.57006MR410603
  34. D. A. Stone, Geodesics in Piecewise Linear Manifolds, Trans. Amer. Math. Soc. 215 (1976), 1-44 Zbl0328.53033MR402648
  35. A. Wald, Sur la courbure des surfaces, C. R. Acad. Sci. Paris 201 (1935), 918-920 Zbl0012.37102
  36. A. Wald, Begreudeung einer koordinatenlosen Differentialgeometrie der Flächen, Ergebnisse e. Mathem. Kolloquims, First Series 7 (1936), 24-46 Zbl0014.23001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.