Metric Ricci Curvature and Flow for PL Manifolds
Emil Saucan[1]
- [1] Department of Mathematics Technion HAIFA 32000 and Department of Mathematics and Computer Science The Open University of Israel RA’ANANA 43537 ISRAEL
Actes des rencontres du CIRM (2013)
- Volume: 3, Issue: 1, page 119-129
- ISSN: 2105-0597
Access Full Article
topAbstract
topHow to cite
topSaucan, Emil. "Metric Ricci Curvature and Flow for PL Manifolds." Actes des rencontres du CIRM 3.1 (2013): 119-129. <http://eudml.org/doc/275405>.
@article{Saucan2013,
abstract = {We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.},
affiliation = {Department of Mathematics Technion HAIFA 32000 and Department of Mathematics and Computer Science The Open University of Israel RA’ANANA 43537 ISRAEL},
author = {Saucan, Emil},
journal = {Actes des rencontres du CIRM},
keywords = {Wald-Berestovskii curvature; PL manifold; Ricci curvature; surface Ricci flow; Bonnet-Myers Theorem; fitting; Bonnet-Myers theorem},
language = {eng},
month = {11},
number = {1},
pages = {119-129},
publisher = {CIRM},
title = {Metric Ricci Curvature and Flow for PL Manifolds},
url = {http://eudml.org/doc/275405},
volume = {3},
year = {2013},
}
TY - JOUR
AU - Saucan, Emil
TI - Metric Ricci Curvature and Flow for PL Manifolds
JO - Actes des rencontres du CIRM
DA - 2013/11//
PB - CIRM
VL - 3
IS - 1
SP - 119
EP - 129
AB - We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.
LA - eng
KW - Wald-Berestovskii curvature; PL manifold; Ricci curvature; surface Ricci flow; Bonnet-Myers Theorem; fitting; Bonnet-Myers theorem
UR - http://eudml.org/doc/275405
ER -
References
top- S. B. Alexander, R. L. Bishop, Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above, Differential Geometry and its Applications 6 (1996), 67-86 Zbl0859.53053MR1384880
- E. Appleboim, Y. Hyams, S. Krakovski, C. Sageev, E. Saucan, The Scale-Curvature Connection and its Application to Texture Segmentation, Theory and Applications of Mathematics & Computer Science 3 (2013), 38-54 Zbl1288.68236
- E. Appleboim, E. Saucan, Y. Y. Zeevi, Ricci Curvature and Flow for Image Denoising and Superesolution, Proceedings of EUSIPCO 2012 (2012), 2743-2747
- V. N. Berestovskii, Spaces with bounded curvature and distance geometry, Siberian Math. J. 16 (1986), 8-19 Zbl0612.53047MR847410
- M. Bestvina, Geometric group theory and 3-manifolds hand in hand: the fulfillment of Thurston’s vision, Bull. Amer. Math. Soc. 51 (2014), 53-70 Zbl1286.57013MR3119822
- L. M. Blumenthal, Distance Geometry – Theory and Applications, (1953), Claredon Press, Oxford Zbl0050.38502MR54981
- L. M. Blumenthal, K. Menger, Studies in Geometry, (1970), Freeman and Co., San Francisco, CA Zbl0204.53401MR273492
- U. Brehm, W. Kühnel, Smooth approximation of polyhedral surfaces regarding curvatures, Geometriae Dedicata 12 (1982), 435-461 Zbl0483.53046MR672873
- Yu. D. Burago, V. A. Zalgaller, Isometric piecewise linear immersions of two-dimensional manifolds with polyhedral metrics into , St. Petersburg Math. J. 7 (1996), 369-385 Zbl0851.52018MR1353490
- B. Chow, The Ricci flow on the 2-sphere, J. Differential Geom. 33 (1991), 325-334 Zbl0734.53033MR1094458
- B. Chow, F. Luo, Combinatorial Ricci Flows on Surfaces, J. Differential Geom. 63 (2003), 97-129 Zbl1070.53040MR2015261
- J. Giesen, Curve Reconstruction, the Traveling Salesman Problem and Menger’s Theorem on Length, Proceedings of the 15th ACM Symposium on Computational Geometry (SoCG) (1999), 207-216 Zbl0984.65012MR1802207
- M. Gromov, W. Thurston, Pinching constants for hyperbolic manifolds, Invent. math. 89 (1987), 1-12 Zbl0646.53037MR892185
- D. X. Gu, E. Saucan, Metric Ricci curvature for PL manifolds, Geometry (2013) Zbl1314.53065
- X. D. Gu, S.-T. Yau, Computational Conformal Geometry, (2008), Advanced Lectures in Mathematics 3, International Press, Somerville, MA Zbl1144.65008MR2439718
- J. Haantjes, Distance geometry. Curvature in abstract metric spaces, Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam 50 (1947), 302-314 Zbl0030.07502MR21325
- J. Haantjes, A characteristic local property of geodesics in certain spaces, Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam 54 (1951), 66-73 Zbl0042.40603MR40675
- Q. Han, J.-X. Hong, Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, (2006), Mathematical Surveys and Monographs, 130, AMS Providence, RI Zbl1113.53002MR2261749
- M. Jin, J. Kim, X. D. Gu, Discrete Surface Ricci Flow: Theory and Applications, LNCS 4647: Mathematics of Surfaces, Springer-Verlag, Berlin (2007), 209-232 Zbl1163.68351
- W. A. Kirk, On Curvature of a Metric Space at a Point, Pacific J. Math. 14 (1964), 195-198 Zbl0168.43402MR161289
- G. Lerman, J. T. Whitehouse, On -dimensional -semimetrics and simplex-type inequalities for high-dimensional sine functions, Journal of Approximation Theory 156 (2009), 52-81 Zbl1170.46025MR2490476
- K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae 10 (1927), 96-115
- J. R. Munkres, Elementary Differential Topology (rev. ed.), (1966), Princeton University Press, Princeton, N.J. Zbl0161.20201MR198479
- H. Pajot, Analytic Capacity, Rectificabilility, Menger Curvature and the Cauchy Integral, LNM 1799, Springer-Verlag, Berlin (2002), 302-314 Zbl1043.28002MR1952175
- C. Plaut, Metric Spaces of Curvature , Handbook of Geometric Topology (Daverman, R. J. and Sher, R. B., editors) (2002), 819-898 Zbl1011.57002MR1886682
- M. Sageev, CAT(0) cube complexes and groups, PCMI Lecture Notes (2013), 1-16
- E. Saucan, On a construction of Burago and Zalgaller, The Asian Journal of Mathematics 16 (2012), 587-606 Zbl1273.57016MR3004279
- E. Saucan, A Metric Ricci Flow for Surfaces and its Applications, Geometry, Imaging and Computing 1 (2014), 259-301 Zbl1319.53075
- E. Saucan, E. Appleboim, Curvature Based Clustering for DNA Microarray Data Analysis, LNCS 3523, Springer-Verlag, Berlin (2005), 405-412
- E. Saucan, E. Appleboim, Metric Methods in Surface Triangulation, LNCS 5654, Springer-Verlag, Berlin (2009), 335-355 Zbl1259.65047
- P. Shvartsman, Sobolev -functions on closed subsets of , arXiv:1210.0590 1 (2012)
- D. A. Stone, A combinatorial analogue of a theorem of Myers, Illinois J. Math. 20 (1976), 12-21 Zbl0316.57001MR410602
- D. A. Stone, Correction to my paper: “A combinatorial analogue of a theorem of Myers”, Illinois J. Math. 20 (1976), 551-554 Zbl0323.57006MR410603
- D. A. Stone, Geodesics in Piecewise Linear Manifolds, Trans. Amer. Math. Soc. 215 (1976), 1-44 Zbl0328.53033MR402648
- A. Wald, Sur la courbure des surfaces, C. R. Acad. Sci. Paris 201 (1935), 918-920 Zbl0012.37102
- A. Wald, Begreudeung einer koordinatenlosen Differentialgeometrie der Flächen, Ergebnisse e. Mathem. Kolloquims, First Series 7 (1936), 24-46 Zbl0014.23001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.