Lyapunov Exponents of Rank -Variations of Hodge Structures and Modular Embeddings
André Kappes[1]
- [1] Goethe-Universität Frankfurt am Main Institut für Mathematik Robert-Mayer-Str. 6–8 Frankfurt am Main (Germany)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 5, page 2037-2066
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKappes, André. "Lyapunov Exponents of Rank $2$-Variations of Hodge Structures and Modular Embeddings." Annales de l’institut Fourier 64.5 (2014): 2037-2066. <http://eudml.org/doc/275414>.
@article{Kappes2014,
abstract = {If the monodromy representation of a VHS over a hyperbolic curve stabilizes a rank two subspace, there is a single non-negative Lyapunov exponent associated with it. We derive an explicit formula using only the representation in the case when the monodromy is discrete.},
affiliation = {Goethe-Universität Frankfurt am Main Institut für Mathematik Robert-Mayer-Str. 6–8 Frankfurt am Main (Germany)},
author = {Kappes, André},
journal = {Annales de l’institut Fourier},
keywords = {Lyapunov exponent; Kontsevich-Zorich cocycle; variations of Hodge structures},
language = {eng},
number = {5},
pages = {2037-2066},
publisher = {Association des Annales de l’institut Fourier},
title = {Lyapunov Exponents of Rank $2$-Variations of Hodge Structures and Modular Embeddings},
url = {http://eudml.org/doc/275414},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Kappes, André
TI - Lyapunov Exponents of Rank $2$-Variations of Hodge Structures and Modular Embeddings
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 2037
EP - 2066
AB - If the monodromy representation of a VHS over a hyperbolic curve stabilizes a rank two subspace, there is a single non-negative Lyapunov exponent associated with it. We derive an explicit formula using only the representation in the case when the monodromy is discrete.
LA - eng
KW - Lyapunov exponent; Kontsevich-Zorich cocycle; variations of Hodge structures
UR - http://eudml.org/doc/275414
ER -
References
top- M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol. 11 (2007), 1887-2073 Zbl1131.32007MR2350471
- Oliver Bauer, Familien von Jacobivarietäten über Origamikurven, (2009), Universitätsverlag, Karlsruhe
- I. Bouw, M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2) 172 (2010), 139-185 Zbl1203.37049MR2680418
- J. Carlson, S. Müller-Stach, C. Peters, Period mappings and period domains, 85 (2003), Cambridge University Press, Cambridge Zbl1030.14004MR2012297
- P. Cohen, J. Wolfart, Modular embeddings for some nonarithmetic Fuchsian groups, Acta Arith. 56 (1990), 93-110 Zbl0717.14014MR1075639
- P. Deligne, Un théorèeme de finitude pour la monodromie, Discrete groups in geometry and analysis (New Haven, Conn., 1984) 67 (1987), 1-19, Birkhäuser Boston, Boston, MA Zbl0656.14010MR900821
- Jordan S. Ellenberg, Endomorphism algebras of Jacobians, Adv. Math. 162 (2001), 243-271 Zbl1065.14507MR1859248
- A. Eskin, M. Kontsevich, A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, (2010) Zbl1305.32007
- Alex Eskin, Maxim Kontsevich, Anton Zorich, Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn. 5 (2011), 319-353 Zbl1254.32019MR2820564
- Myriam Finster, Stabilisatorgruppen in und Veechgruppen von Überlagerungen, (2008)
- G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), 1-103 Zbl1034.37003MR1888794
- E. Gutkin, C. Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000), 191-213 Zbl0965.30019MR1760625
- Frank Herrlich, Teichmüller curves defined by characteristic origamis, The geometry of Riemann surfaces and abelian varieties 397 (2006), 133-144, Amer. Math. Soc., Providence, RI Zbl1098.14019MR2218004
- Frank Herrlich, Gabriela Schmithüsen, On the boundary of Teichmüller disks in Teichmüller and in Schottky space, Handbook of Teichmüller theory. Vol. I 11 (2007), 293-349, Eur. Math. Soc., Zürich Zbl1141.30011MR2349673
- Pascal Hubert, Thomas A. Schmidt, An introduction to Veech surfaces, Handbook of dynamical systems. Vol. 1B (2006), 501-526, Elsevier B. V., Amsterdam Zbl1130.37367MR2186246
- André Kappes, Monodromy Representations and Lyapunov Exponents of Origamis, (2011)
- André Kappes, Martin Möller, Lyapunov spectrum of ball quotients with applications to commensurability questions, (2012) Zbl1334.22010
- M. Kontsevich, A. Zorich, Lyapunov exponents and Hodge theory, (1997) Zbl1058.37508
- Maxim Kontsevich, Anton Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003), 631-678 Zbl1087.32010MR2000471
- C. Matheus, J.-C. Yoccoz, D. Zmiaikou, Homology of origamis with symmetries, (2012) Zbl06387303
- C. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003), 857-885 Zbl1030.32012MR1992827
- M. Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc. 19 (2006), 327-344 (electronic) Zbl1090.32004MR2188128
- M. Möller, Teichmüller curves, mainly from the point of view of algebraic geometry, Moduli spaces of Riemann surfaces 20 (2013), 267-318, Amer. Math. Soc., Providence, RI Zbl1279.14031
- G. Schmithüsen, An algorithm for finding the Veech group of an origami, Experiment. Math. 13 (2004), 459-472 Zbl1078.14036MR2118271
- H. Shiga, On holomorphic mappings of complex manifolds with ball model, J. Math. Soc. Japan 56 (2004), 1087-1107 Zbl1066.32022MR2091418
- John Stillwell, Classical topology and combinatorial group theory, (1980), Springer, New York Zbl0453.57001MR602149
- C. Weiss, Twisted Teichmüller curves, (2012)
- Alex Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces, J. Mod. Dyn. 3 (2012), 405-426 Zbl1254.32021MR2988814
- Alex Wright, Schwarz triangle mappings and Teichmüller curves: The Veech-Ward-Bouw-Möller-Teichmüller curves, Geom. Funct. Anal. 23 (2013), 776-809 Zbl1267.30099MR3053761
- Robert J. Zimmer, Ergodic theory and semisimple groups, 81 (1984), Birkhäuser Verlag, Basel Zbl0571.58015MR776417
- David Zmiaikou, Origamis and permutation groups, (2011)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.