Homology of origamis with symmetries

Carlos Matheus[1]; Jean-Christophe Yoccoz[2]; David Zmiaikou[3]

  • [1] Université Paris 13 Sorbonne Paris Cité LAGA, CNRS (UMR 7539) F-93430, Villetaneuse (France)
  • [2] Collège de France (PSL) 3, Rue d’Ulm 75005 Paris (France)
  • [3] Département de Mathématiques Université Paris-Sud 11 91405 Orsay Cedex (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 3, page 1131-1176
  • ISSN: 0373-0956

Abstract

top
Given an origami (square-tiled surface) M with automorphism group Γ , we compute the decomposition of the first homology group of M into isotypic Γ -submodules. Through the action of the affine group of M on the homology group, we deduce some consequences for the multiplicities of the Lyapunov exponents of the Kontsevich-Zorich cocycle. We also construct and study several families of interesting origamis illustrating our results.

How to cite

top

Matheus, Carlos, Yoccoz, Jean-Christophe, and Zmiaikou, David. "Homology of origamis with symmetries." Annales de l’institut Fourier 64.3 (2014): 1131-1176. <http://eudml.org/doc/275646>.

@article{Matheus2014,
abstract = {Given an origami (square-tiled surface) $M$ with automorphism group $\Gamma $, we compute the decomposition of the first homology group of $M$ into isotypic $\Gamma $-submodules. Through the action of the affine group of $M$ on the homology group, we deduce some consequences for the multiplicities of the Lyapunov exponents of the Kontsevich-Zorich cocycle. We also construct and study several families of interesting origamis illustrating our results.},
affiliation = {Université Paris 13 Sorbonne Paris Cité LAGA, CNRS (UMR 7539) F-93430, Villetaneuse (France); Collège de France (PSL) 3, Rue d’Ulm 75005 Paris (France); Département de Mathématiques Université Paris-Sud 11 91405 Orsay Cedex (France)},
author = {Matheus, Carlos, Yoccoz, Jean-Christophe, Zmiaikou, David},
journal = {Annales de l’institut Fourier},
keywords = {Origamis; square-tiled surfaces; automorphisms group; affine group; representations of finite groups; regular and quasi-regular origamis; Kontsevich-Zorich cocycle; Lyapunov exponents; origamis},
language = {eng},
number = {3},
pages = {1131-1176},
publisher = {Association des Annales de l’institut Fourier},
title = {Homology of origamis with symmetries},
url = {http://eudml.org/doc/275646},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Matheus, Carlos
AU - Yoccoz, Jean-Christophe
AU - Zmiaikou, David
TI - Homology of origamis with symmetries
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1131
EP - 1176
AB - Given an origami (square-tiled surface) $M$ with automorphism group $\Gamma $, we compute the decomposition of the first homology group of $M$ into isotypic $\Gamma $-submodules. Through the action of the affine group of $M$ on the homology group, we deduce some consequences for the multiplicities of the Lyapunov exponents of the Kontsevich-Zorich cocycle. We also construct and study several families of interesting origamis illustrating our results.
LA - eng
KW - Origamis; square-tiled surfaces; automorphisms group; affine group; representations of finite groups; regular and quasi-regular origamis; Kontsevich-Zorich cocycle; Lyapunov exponents; origamis
UR - http://eudml.org/doc/275646
ER -

References

top
  1. Artur Avila, Marcelo Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math. 198 (2007), 1-56 Zbl1143.37001MR2316268
  2. Matt Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol. 11 (2007), 1887-2073 Zbl1131.32007MR2350471
  3. Irene I. Bouw, Martin Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2) 172 (2010), 139-185 Zbl1203.37049MR2680418
  4. Dawei Chen, Martin Möller, Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol. 16 (2012), 2427-2479 Zbl1266.14018MR3033521
  5. Y. Cornulier, Formes bilinéaires invariantes, (2004) 
  6. V. Delecroix, P. Hubert, S. Lelièvre, Diffusion for the periodic wind-tree model Zbl06399200
  7. Alex Eskin, Maxim Kontsevich, Anton Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow 
  8. Alex Eskin, Maxim Kontsevich, Anton Zorich, Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn. 5 (2011), 319-353 Zbl1254.32019MR2820564
  9. Giovanni Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), 1-103 Zbl1034.37003MR1888794
  10. William Fulton, Joe Harris, Representation theory, 129 (1991), Springer-Verlag, New York Zbl0744.22001MR1153249
  11. Eugene Gutkin, Chris Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000), 191-213 Zbl0965.30019MR1760625
  12. Frank Herrlich, Teichmüller curves defined by characteristic origamis, The geometry of Riemann surfaces and abelian varieties 397 (2006), 133-144, Amer. Math. Soc., Providence, RI Zbl1098.14019MR2218004
  13. Frank Herrlich, Gabriela Schmithüsen, An extraordinary origami curve, Math. Nachr. 281 (2008), 219-237 Zbl1159.14012MR2387362
  14. M. Kontsevich, Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996) 24 (1997), 318-332, World Sci. Publ., River Edge, NJ Zbl1058.37508MR1490861
  15. Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), 169-200 Zbl0497.28012MR644018
  16. Carlos Matheus, Jean-Christophe Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn. 4 (2010), 453-486 Zbl1220.37004MR2729331
  17. Oystein Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307-314 Zbl0043.02402MR40298
  18. Jean-Pierre Serre, Linear representations of finite groups, (1977), Springer-Verlag, New York-Heidelberg Zbl0355.20006MR450380
  19. William A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201-242 Zbl0486.28014MR644019
  20. William A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2) 124 (1986), 441-530 Zbl0658.32016MR866707
  21. Amie Wilkinson, Conservative partially hyperbolic dynamics, Proceedings of the International Congress of Mathematicians. Volume III (2010), 1816-1836, Hindustan Book Agency, New Delhi Zbl1246.37054MR2827868
  22. Jean-Christophe Yoccoz, Interval exchange maps and translation surfaces, Homogeneous flows, moduli spaces and arithmetic 10 (2010), 1-69, Amer. Math. Soc., Providence, RI Zbl1248.37038MR2648692
  23. Fei Yu, Kang Zuo, Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn. 7 (2013), 209-237 Zbl1273.32019MR3106711
  24. D. Zmiaikou, Origamis and permutation groups, (2011) 
  25. Anton Zorich, Asymptotic flag of an orientable measured foliation on a surface, Geometric study of foliations (Tokyo, 1993) (1994), 479-498, World Sci. Publ., River Edge, NJ Zbl0909.58033MR1363744
  26. Anton Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble) 46 (1996), 325-370 Zbl0853.28007MR1393518
  27. Anton Zorich, Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems 17 (1997), 1477-1499 Zbl0958.37002MR1488330
  28. Anton Zorich, On hyperplane sections of periodic surfaces, Solitons, geometry, and topology: on the crossroad 179 (1997), 173-189, Amer. Math. Soc., Providence, RI Zbl1055.37525MR1437163
  29. Anton Zorich, How do the leaves of a closed 1 -form wind around a surface?, Pseudoperiodic topology 197 (1999), 135-178, Amer. Math. Soc., Providence, RI Zbl0976.37012MR1733872
  30. Anton Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. I (2006), 437-583, Springer, Berlin Zbl1129.32012MR2261104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.