Homology of origamis with symmetries
Carlos Matheus[1]; Jean-Christophe Yoccoz[2]; David Zmiaikou[3]
- [1] Université Paris 13 Sorbonne Paris Cité LAGA, CNRS (UMR 7539) F-93430, Villetaneuse (France)
- [2] Collège de France (PSL) 3, Rue d’Ulm 75005 Paris (France)
- [3] Département de Mathématiques Université Paris-Sud 11 91405 Orsay Cedex (France)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 3, page 1131-1176
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMatheus, Carlos, Yoccoz, Jean-Christophe, and Zmiaikou, David. "Homology of origamis with symmetries." Annales de l’institut Fourier 64.3 (2014): 1131-1176. <http://eudml.org/doc/275646>.
@article{Matheus2014,
abstract = {Given an origami (square-tiled surface) $M$ with automorphism group $\Gamma $, we compute the decomposition of the first homology group of $M$ into isotypic $\Gamma $-submodules. Through the action of the affine group of $M$ on the homology group, we deduce some consequences for the multiplicities of the Lyapunov exponents of the Kontsevich-Zorich cocycle. We also construct and study several families of interesting origamis illustrating our results.},
affiliation = {Université Paris 13 Sorbonne Paris Cité LAGA, CNRS (UMR 7539) F-93430, Villetaneuse (France); Collège de France (PSL) 3, Rue d’Ulm 75005 Paris (France); Département de Mathématiques Université Paris-Sud 11 91405 Orsay Cedex (France)},
author = {Matheus, Carlos, Yoccoz, Jean-Christophe, Zmiaikou, David},
journal = {Annales de l’institut Fourier},
keywords = {Origamis; square-tiled surfaces; automorphisms group; affine group; representations of finite groups; regular and quasi-regular origamis; Kontsevich-Zorich cocycle; Lyapunov exponents; origamis},
language = {eng},
number = {3},
pages = {1131-1176},
publisher = {Association des Annales de l’institut Fourier},
title = {Homology of origamis with symmetries},
url = {http://eudml.org/doc/275646},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Matheus, Carlos
AU - Yoccoz, Jean-Christophe
AU - Zmiaikou, David
TI - Homology of origamis with symmetries
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1131
EP - 1176
AB - Given an origami (square-tiled surface) $M$ with automorphism group $\Gamma $, we compute the decomposition of the first homology group of $M$ into isotypic $\Gamma $-submodules. Through the action of the affine group of $M$ on the homology group, we deduce some consequences for the multiplicities of the Lyapunov exponents of the Kontsevich-Zorich cocycle. We also construct and study several families of interesting origamis illustrating our results.
LA - eng
KW - Origamis; square-tiled surfaces; automorphisms group; affine group; representations of finite groups; regular and quasi-regular origamis; Kontsevich-Zorich cocycle; Lyapunov exponents; origamis
UR - http://eudml.org/doc/275646
ER -
References
top- Artur Avila, Marcelo Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math. 198 (2007), 1-56 Zbl1143.37001MR2316268
- Matt Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol. 11 (2007), 1887-2073 Zbl1131.32007MR2350471
- Irene I. Bouw, Martin Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2) 172 (2010), 139-185 Zbl1203.37049MR2680418
- Dawei Chen, Martin Möller, Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol. 16 (2012), 2427-2479 Zbl1266.14018MR3033521
- Y. Cornulier, Formes bilinéaires invariantes, (2004)
- V. Delecroix, P. Hubert, S. Lelièvre, Diffusion for the periodic wind-tree model Zbl06399200
- Alex Eskin, Maxim Kontsevich, Anton Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow
- Alex Eskin, Maxim Kontsevich, Anton Zorich, Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn. 5 (2011), 319-353 Zbl1254.32019MR2820564
- Giovanni Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), 1-103 Zbl1034.37003MR1888794
- William Fulton, Joe Harris, Representation theory, 129 (1991), Springer-Verlag, New York Zbl0744.22001MR1153249
- Eugene Gutkin, Chris Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000), 191-213 Zbl0965.30019MR1760625
- Frank Herrlich, Teichmüller curves defined by characteristic origamis, The geometry of Riemann surfaces and abelian varieties 397 (2006), 133-144, Amer. Math. Soc., Providence, RI Zbl1098.14019MR2218004
- Frank Herrlich, Gabriela Schmithüsen, An extraordinary origami curve, Math. Nachr. 281 (2008), 219-237 Zbl1159.14012MR2387362
- M. Kontsevich, Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996) 24 (1997), 318-332, World Sci. Publ., River Edge, NJ Zbl1058.37508MR1490861
- Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), 169-200 Zbl0497.28012MR644018
- Carlos Matheus, Jean-Christophe Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn. 4 (2010), 453-486 Zbl1220.37004MR2729331
- Oystein Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307-314 Zbl0043.02402MR40298
- Jean-Pierre Serre, Linear representations of finite groups, (1977), Springer-Verlag, New York-Heidelberg Zbl0355.20006MR450380
- William A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201-242 Zbl0486.28014MR644019
- William A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2) 124 (1986), 441-530 Zbl0658.32016MR866707
- Amie Wilkinson, Conservative partially hyperbolic dynamics, Proceedings of the International Congress of Mathematicians. Volume III (2010), 1816-1836, Hindustan Book Agency, New Delhi Zbl1246.37054MR2827868
- Jean-Christophe Yoccoz, Interval exchange maps and translation surfaces, Homogeneous flows, moduli spaces and arithmetic 10 (2010), 1-69, Amer. Math. Soc., Providence, RI Zbl1248.37038MR2648692
- Fei Yu, Kang Zuo, Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn. 7 (2013), 209-237 Zbl1273.32019MR3106711
- D. Zmiaikou, Origamis and permutation groups, (2011)
- Anton Zorich, Asymptotic flag of an orientable measured foliation on a surface, Geometric study of foliations (Tokyo, 1993) (1994), 479-498, World Sci. Publ., River Edge, NJ Zbl0909.58033MR1363744
- Anton Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble) 46 (1996), 325-370 Zbl0853.28007MR1393518
- Anton Zorich, Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems 17 (1997), 1477-1499 Zbl0958.37002MR1488330
- Anton Zorich, On hyperplane sections of periodic surfaces, Solitons, geometry, and topology: on the crossroad 179 (1997), 173-189, Amer. Math. Soc., Providence, RI Zbl1055.37525MR1437163
- Anton Zorich, How do the leaves of a closed -form wind around a surface?, Pseudoperiodic topology 197 (1999), 135-178, Amer. Math. Soc., Providence, RI Zbl0976.37012MR1733872
- Anton Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. I (2006), 437-583, Springer, Berlin Zbl1129.32012MR2261104
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.