Bar complexes and extensions of classical exponential functors

Antoine Touzé[1]

  • [1] Université Paris 13 Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 6, page 2563-2637
  • ISSN: 0373-0956

Abstract

top
We compute Ext-groups between classical exponential functors (i.e. symmetric, exterior or divided powers) and their Frobenius twists. Our method relies on bar constructions, and bridges these Ext-groups with the homology of Eilenberg-Mac Lane spaces.This article completes earlier results of the author, and provides an alternative approach to classical Ext-computations in the category of strict polynomial functors over fields. We also obtain significant Ext-computations for strict polynomial functors over the integers.

How to cite

top

Touzé, Antoine. "Bar complexes and extensions of classical exponential functors." Annales de l’institut Fourier 64.6 (2014): 2563-2637. <http://eudml.org/doc/275421>.

@article{Touzé2014,
abstract = {We compute Ext-groups between classical exponential functors (i.e. symmetric, exterior or divided powers) and their Frobenius twists. Our method relies on bar constructions, and bridges these Ext-groups with the homology of Eilenberg-Mac Lane spaces.This article completes earlier results of the author, and provides an alternative approach to classical Ext-computations in the category of strict polynomial functors over fields. We also obtain significant Ext-computations for strict polynomial functors over the integers.},
affiliation = {Université Paris 13 Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse (France)},
author = {Touzé, Antoine},
journal = {Annales de l’institut Fourier},
keywords = {Strict polynomial functors; extensions; bar complexes; Eilenberg-Mac Lane spaces; Frobenius twist; exponential functors; strict polynomial functors; bar construction; symmetric algebra; exterior algebra; divided power algebra},
language = {eng},
number = {6},
pages = {2563-2637},
publisher = {Association des Annales de l’institut Fourier},
title = {Bar complexes and extensions of classical exponential functors},
url = {http://eudml.org/doc/275421},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Touzé, Antoine
TI - Bar complexes and extensions of classical exponential functors
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2563
EP - 2637
AB - We compute Ext-groups between classical exponential functors (i.e. symmetric, exterior or divided powers) and their Frobenius twists. Our method relies on bar constructions, and bridges these Ext-groups with the homology of Eilenberg-Mac Lane spaces.This article completes earlier results of the author, and provides an alternative approach to classical Ext-computations in the category of strict polynomial functors over fields. We also obtain significant Ext-computations for strict polynomial functors over the integers.
LA - eng
KW - Strict polynomial functors; extensions; bar complexes; Eilenberg-Mac Lane spaces; Frobenius twist; exponential functors; strict polynomial functors; bar construction; symmetric algebra; exterior algebra; divided power algebra
UR - http://eudml.org/doc/275421
ER -

References

top
  1. Kaan Akin, Extensions of symmetric tensors by alternating tensors, J. Algebra 121 (1989), 358-363 Zbl0682.14033MR992770
  2. L. Breen, R. Mikhailov, A. Touzé, Derived functors of the divided powers 
  3. Kenneth S. Brown, Cohomology of groups, 87 (1982), Springer-Verlag, New York-Berlin Zbl0584.20036MR672956
  4. H. Cartan, Algèbres d’Eilenberg Mac Lane et homotopie, (1955 (French)), Séminaire Henri Cartan de l’École Normale supérieure, 1954/1955, Secrétariat mathématique, 11 rue Pierre Curie, Paris Zbl0067.15601
  5. Marcin Chałupnik, Koszul duality and extensions of exponential functors, Adv. Math. 218 (2008), 969-982 Zbl1148.18008MR2414328
  6. E. Cline, B. Parshall, L. Scott, Wilberd van der Kallen, Rational and generic cohomology, Invent. Math. 39 (1977), 143-163 Zbl0336.20036MR439856
  7. Albrecht Dold, Dieter Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961), 201-312 Zbl0098.36005MR150183
  8. Samuel Eilenberg, Saunders Mac Lane, On the groups of H ( Π , n ) . I, Ann. of Math. (2) 58 (1953), 55-106 Zbl0050.39304MR56295
  9. David Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
  10. Vincent Franjou, Eric M. Friedlander, Teimuraz Pirashvili, Lionel Schwartz, Rational representations, the Steenrod algebra and functor homology, 16 (2003), Société Mathématique de France, Paris Zbl1061.18011MR2117525
  11. Vincent Franjou, Eric M. Friedlander, Alexander Scorichenko, Andrei Suslin, General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999), 663-728 Zbl0952.20035MR1726705
  12. Eric M. Friedlander, Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), 209-270 Zbl0945.14028MR1427618
  13. Henning Krause, Koszul, Ringel and Serre duality for strict polynomial functors, Compos. Math. 149 (2013), 996-1018 Zbl1293.20046MR3077659
  14. Jean-Louis Loday, Bruno Vallette, Algebraic operads, 346 (2012), Springer, Heidelberg Zbl1260.18001MR2954392
  15. Saunders Mac Lane, Homology, (1995), Springer-Verlag, Berlin Zbl0818.18001MR1344215
  16. Jean-Pierre Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198-232 Zbl0052.19501MR60234
  17. Andrei Suslin, Eric M. Friedlander, Christopher P. Bendel, Infinitesimal 1 -parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), 693-728 Zbl0960.14023MR1443546
  18. Antoine Touzé, Cohomology of classical algebraic groups from the functorial viewpoint, Adv. Math. 225 (2010), 33-68 Zbl1208.20043MR2669348
  19. Antoine Touzé, Troesch complexes and extensions of strict polynomial functors, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 53-99 Zbl1253.20047MR2961787
  20. Charles A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press, Cambridge Zbl0797.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.