Bar complexes and extensions of classical exponential functors
- [1] Université Paris 13 Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse (France)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 6, page 2563-2637
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTouzé, Antoine. "Bar complexes and extensions of classical exponential functors." Annales de l’institut Fourier 64.6 (2014): 2563-2637. <http://eudml.org/doc/275421>.
@article{Touzé2014,
abstract = {We compute Ext-groups between classical exponential functors (i.e. symmetric, exterior or divided powers) and their Frobenius twists. Our method relies on bar constructions, and bridges these Ext-groups with the homology of Eilenberg-Mac Lane spaces.This article completes earlier results of the author, and provides an alternative approach to classical Ext-computations in the category of strict polynomial functors over fields. We also obtain significant Ext-computations for strict polynomial functors over the integers.},
affiliation = {Université Paris 13 Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse (France)},
author = {Touzé, Antoine},
journal = {Annales de l’institut Fourier},
keywords = {Strict polynomial functors; extensions; bar complexes; Eilenberg-Mac Lane spaces; Frobenius twist; exponential functors; strict polynomial functors; bar construction; symmetric algebra; exterior algebra; divided power algebra},
language = {eng},
number = {6},
pages = {2563-2637},
publisher = {Association des Annales de l’institut Fourier},
title = {Bar complexes and extensions of classical exponential functors},
url = {http://eudml.org/doc/275421},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Touzé, Antoine
TI - Bar complexes and extensions of classical exponential functors
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2563
EP - 2637
AB - We compute Ext-groups between classical exponential functors (i.e. symmetric, exterior or divided powers) and their Frobenius twists. Our method relies on bar constructions, and bridges these Ext-groups with the homology of Eilenberg-Mac Lane spaces.This article completes earlier results of the author, and provides an alternative approach to classical Ext-computations in the category of strict polynomial functors over fields. We also obtain significant Ext-computations for strict polynomial functors over the integers.
LA - eng
KW - Strict polynomial functors; extensions; bar complexes; Eilenberg-Mac Lane spaces; Frobenius twist; exponential functors; strict polynomial functors; bar construction; symmetric algebra; exterior algebra; divided power algebra
UR - http://eudml.org/doc/275421
ER -
References
top- Kaan Akin, Extensions of symmetric tensors by alternating tensors, J. Algebra 121 (1989), 358-363 Zbl0682.14033MR992770
- L. Breen, R. Mikhailov, A. Touzé, Derived functors of the divided powers
- Kenneth S. Brown, Cohomology of groups, 87 (1982), Springer-Verlag, New York-Berlin Zbl0584.20036MR672956
- H. Cartan, Algèbres d’Eilenberg Mac Lane et homotopie, (1955 (French)), Séminaire Henri Cartan de l’École Normale supérieure, 1954/1955, Secrétariat mathématique, 11 rue Pierre Curie, Paris Zbl0067.15601
- Marcin Chałupnik, Koszul duality and extensions of exponential functors, Adv. Math. 218 (2008), 969-982 Zbl1148.18008MR2414328
- E. Cline, B. Parshall, L. Scott, Wilberd van der Kallen, Rational and generic cohomology, Invent. Math. 39 (1977), 143-163 Zbl0336.20036MR439856
- Albrecht Dold, Dieter Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961), 201-312 Zbl0098.36005MR150183
- Samuel Eilenberg, Saunders Mac Lane, On the groups of . I, Ann. of Math. (2) 58 (1953), 55-106 Zbl0050.39304MR56295
- David Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
- Vincent Franjou, Eric M. Friedlander, Teimuraz Pirashvili, Lionel Schwartz, Rational representations, the Steenrod algebra and functor homology, 16 (2003), Société Mathématique de France, Paris Zbl1061.18011MR2117525
- Vincent Franjou, Eric M. Friedlander, Alexander Scorichenko, Andrei Suslin, General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999), 663-728 Zbl0952.20035MR1726705
- Eric M. Friedlander, Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), 209-270 Zbl0945.14028MR1427618
- Henning Krause, Koszul, Ringel and Serre duality for strict polynomial functors, Compos. Math. 149 (2013), 996-1018 Zbl1293.20046MR3077659
- Jean-Louis Loday, Bruno Vallette, Algebraic operads, 346 (2012), Springer, Heidelberg Zbl1260.18001MR2954392
- Saunders Mac Lane, Homology, (1995), Springer-Verlag, Berlin Zbl0818.18001MR1344215
- Jean-Pierre Serre, Cohomologie modulo des complexes d’Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198-232 Zbl0052.19501MR60234
- Andrei Suslin, Eric M. Friedlander, Christopher P. Bendel, Infinitesimal -parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), 693-728 Zbl0960.14023MR1443546
- Antoine Touzé, Cohomology of classical algebraic groups from the functorial viewpoint, Adv. Math. 225 (2010), 33-68 Zbl1208.20043MR2669348
- Antoine Touzé, Troesch complexes and extensions of strict polynomial functors, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 53-99 Zbl1253.20047MR2961787
- Charles A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press, Cambridge Zbl0797.18001MR1269324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.