Displaying similar documents to “Bar complexes and extensions of classical exponential functors”

Coalgebras for binary methods : properties of bisimulations and invariants

Hendrik Tews (2001)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

Coalgebras for endofunctors 𝒞 𝒞 can be used to model classes of object-oriented languages. However, binary methods do not fit directly into this approach. This paper proposes an extension of the coalgebraic framework, namely the use of extended polynomial functors 𝒞 o p × 𝒞 𝒞 . This extension allows the incorporation of binary methods into coalgebraic class specifications. The paper also discusses how to define bisimulation and invariants for coalgebras of extended polynomial functors and proves...

The structure of the tensor product of 𝔽 2 [ - ] with a finite functor between 𝔽 2 -vector spaces

Geoffrey M. L. Powell (2000)

Annales de l'institut Fourier

Similarity:

The paper studies the structure of functors I F in the category of functors from finite dimensional 𝔽 2 -vector spaces to 𝔽 2 -vector spaces, where F is a finite functor and I is the injective functor V 𝔽 2 V * . A detection theorem is proved for sub-functors of such functors, which is the basis of the proof that the functors I F are artinian of type one.

Exponential Objects

Marco Riccardi (2015)

Formalized Mathematics

Similarity:

In the first part of this article we formalize the concepts of terminal and initial object, categorical product [4] and natural transformation within a free-object category [1]. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category [12].