Tunnel effect for semiclassical random walk

Jean-François Bony[1]; Frédéric Hérau[2]; Laurent Michel[3]

  • [1] Institut Mathématiques de Bordeaux Université de Bordeaux, UMR CNRS 5251 351, cours de la Libération 33405 Talence Cedex, France
  • [2] Laboratoire de Mathématiques Jean Leray Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière 44322 Nantes Cedex 03, France
  • [3] Laboratoire Jean-Alexandre Dieudonné Université de Nice - Sophia Antipolis UMR CNRS 7351 06108 Nice Cedex 02, France

Journées Équations aux dérivées partielles (2014)

  • Volume: 8, Issue: 2, page 1-18
  • ISSN: 0752-0360

Abstract

top
In this note we describe recent results on semiclassical random walk associated to a probability density which may also concentrate as the semiclassical parameter goes to zero. The main result gives a spectral asymptotics of the close to 1 eigenvalues. This problem was studied in [1] and relies on a general factorization result for pseudo-differential operators. In this note we just sketch the proof of this second theorem. At the end of the note, using the factorization, we give a new proof of the spectral asymptotics based on some comparison argument.

How to cite

top

Bony, Jean-François, Hérau, Frédéric, and Michel, Laurent. "Tunnel effect for semiclassical random walk." Journées Équations aux dérivées partielles 8.2 (2014): 1-18. <http://eudml.org/doc/275423>.

@article{Bony2014,
abstract = {In this note we describe recent results on semiclassical random walk associated to a probability density which may also concentrate as the semiclassical parameter goes to zero. The main result gives a spectral asymptotics of the close to $1$ eigenvalues. This problem was studied in [1] and relies on a general factorization result for pseudo-differential operators. In this note we just sketch the proof of this second theorem. At the end of the note, using the factorization, we give a new proof of the spectral asymptotics based on some comparison argument.},
affiliation = {Institut Mathématiques de Bordeaux Université de Bordeaux, UMR CNRS 5251 351, cours de la Libération 33405 Talence Cedex, France; Laboratoire de Mathématiques Jean Leray Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière 44322 Nantes Cedex 03, France; Laboratoire Jean-Alexandre Dieudonné Université de Nice - Sophia Antipolis UMR CNRS 7351 06108 Nice Cedex 02, France},
author = {Bony, Jean-François, Hérau, Frédéric, Michel, Laurent},
journal = {Journées Équations aux dérivées partielles},
keywords = {semiclassical random walks; tunnel effect; Markov transition kernel; pseudodifferential operators; spectral theory; Witten-Laplacian},
language = {eng},
number = {2},
pages = {1-18},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Tunnel effect for semiclassical random walk},
url = {http://eudml.org/doc/275423},
volume = {8},
year = {2014},
}

TY - JOUR
AU - Bony, Jean-François
AU - Hérau, Frédéric
AU - Michel, Laurent
TI - Tunnel effect for semiclassical random walk
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
VL - 8
IS - 2
SP - 1
EP - 18
AB - In this note we describe recent results on semiclassical random walk associated to a probability density which may also concentrate as the semiclassical parameter goes to zero. The main result gives a spectral asymptotics of the close to $1$ eigenvalues. This problem was studied in [1] and relies on a general factorization result for pseudo-differential operators. In this note we just sketch the proof of this second theorem. At the end of the note, using the factorization, we give a new proof of the spectral asymptotics based on some comparison argument.
LA - eng
KW - semiclassical random walks; tunnel effect; Markov transition kernel; pseudodifferential operators; spectral theory; Witten-Laplacian
UR - http://eudml.org/doc/275423
ER -

References

top
  1. J.-F. Bony, F. Hérau, L. Michel, Tunnel effect for semiclassical random walks Zbl1325.60067
  2. A. Bovier, V. Gayrard, M. Klein, Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues, J. Eur. Math. Soc. 7 (2005), 69-99 Zbl1105.82025MR2120991
  3. H. Cycon, R. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, (1987), Springer-Verlag Zbl0619.47005MR883643
  4. M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press Zbl0926.35002MR1735654
  5. B. Helffer, Semi-classical analysis for the Schrödinger operator and applications, 1336 (1988), Springer-Verlag Zbl0647.35002MR960278
  6. B. Helffer, M. Klein, F. Nier, Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach, Mat. Contemp. 26 (2004), 41-85 Zbl1079.58025MR2111815
  7. B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, 1862 (2005), Springer-Verlag Zbl1072.35006MR2130405
  8. B. Helffer, J. Sjöstrand, Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations 10 (1985), 245-340 Zbl0597.35024MR780068
  9. F. Hérau, M. Hitrik, J. Sjöstrand, Tunnel effect and symmetries for Kramers-Fokker-Planck type operators, J. Inst. Math. Jussieu 10 (2011), 567-634 Zbl1223.35246MR2806463
  10. F. Hérau, M. Hitrik, J. Sjöstrand, Supersymmetric structures for second order differential operators, Algebra i Analiz 25 (2013), 125-154 Zbl1303.81086MR3114853
  11. T. Lelièvre, M. Rousset, G. Stoltz, Free energy computations, (2010), Imperial College Press Zbl1227.82002MR2681239
  12. A. Martinez, An introduction to semiclassical and microlocal analysis, (2002), Springer-Verlag Zbl0994.35003MR1872698
  13. A. Martinez, M. Rouleux, Effet tunnel entre puits dégénérés, Comm. Partial Differential Equations 13 (1988), 1157-1187 Zbl0649.35073MR946285
  14. M. Reed, B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, (1978), Academic Press Zbl0242.46001MR493421
  15. M. Zworski, Semiclassical analysis, 138 (2012), American Mathematical Society Zbl1252.58001MR2952218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.