Local Indecomposability of Hilbert Modular Galois Representations
Bin Zhao[1]
- [1] Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 4, page 1521-1560
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topZhao, Bin. "Local Indecomposability of Hilbert Modular Galois Representations." Annales de l’institut Fourier 64.4 (2014): 1521-1560. <http://eudml.org/doc/275427>.
@article{Zhao2014,
abstract = {We prove the indecomposability of the Galois representation restricted to the $p$-decomposition group attached to a non CM nearly $p$-ordinary weight two Hilbert modular form over a totally real field $F$ under the assumption that either the degree of $F$ over $\mathbb\{Q\}$ is odd or the automorphic representation attached to the Hilbert modular form is square integrable at some finite place of $F$.},
affiliation = {Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA},
author = {Zhao, Bin},
journal = {Annales de l’institut Fourier},
keywords = {Galois representation; Hilbert modular forms; complex multiplication; modular Shimura varieties},
language = {eng},
number = {4},
pages = {1521-1560},
publisher = {Association des Annales de l’institut Fourier},
title = {Local Indecomposability of Hilbert Modular Galois Representations},
url = {http://eudml.org/doc/275427},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Zhao, Bin
TI - Local Indecomposability of Hilbert Modular Galois Representations
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 4
SP - 1521
EP - 1560
AB - We prove the indecomposability of the Galois representation restricted to the $p$-decomposition group attached to a non CM nearly $p$-ordinary weight two Hilbert modular form over a totally real field $F$ under the assumption that either the degree of $F$ over $\mathbb{Q}$ is odd or the automorphic representation attached to the Hilbert modular form is square integrable at some finite place of $F$.
LA - eng
KW - Galois representation; Hilbert modular forms; complex multiplication; modular Shimura varieties
UR - http://eudml.org/doc/275427
ER -
References
top- B. Balasubramanyam, E. Ghate, V. Vatsal, On local Galois representations associated to ordinary Hilbert modular forms Zbl1307.11067
- M. Brakočević, Anticyclotomic -adic -function of central critical Rankin-Selberg -value
- H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), 409-468 Zbl0616.10025MR870690
- R. Coleman, Classical and overconvergent modular forms, Invent. Math. 124 (1996), 215-241 Zbl0851.11030MR1369416
- B. Conrad, C.-L. Chai, F. Oort, CM Liftings, (2011), book manuscript
- A.J. de Jong, R. Noot, Jacobians with complex multiplication, Arithmetic Algebraic Geometry 89 (1991), 177-192, G. van der Geer, F. Oort and J.Steenbrink, Boston Zbl0732.14014
- P. Deligne, G. Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math. 90 (1994), 59-79 Zbl0826.14027MR1266495
- M. Emerton, A -adic variational Hodge conjecture and modular forms with complex multiplication
- G. Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic geometry (1986), 9-27, G. Cornell and J. Silverman, New York Zbl0602.14044MR861971
- E. Ghate, Ordinary forms and their local Galois representations, Algebra and number theory (2005), 226-242, Hindustan Book Agency, Delhi Zbl1085.11029MR2193355
- E. Ghate, V. Vatsal, On the local behaviour of ordinary -adic representations, Ann. Inst. Fourier (Grenoble) 54 (2004), 2143-2162 Zbl1131.11341MR2139691
- E. Goren, Lectures on Hilbert Modular Varieties and Modular Forms, (2001), American Mathematical Soc. Zbl0986.11037MR1863355
- F. Gouvêa, B. Mazur, Families of modular eigenforms, Math. Comp. 58 (1992), 793-805 Zbl0773.11030MR1122070
- H. Hida, Elliptic Curves and Arithmetic Invariant Zbl1284.11001
- H. Hida, Local indecomposability of Tate modules of non CM abelian varieties with real multiplication Zbl1284.14033MR3037789
- H. Hida, On abelian varieties with complex multiplication as factors of the Jacobians of Shimura curves, Amer. J. Math. 103 (1981), 727-776 Zbl0477.14024MR623136
- H. Hida, On -adic Hecke algebras for over totally real fields, Ann. of Math. 128 (1988), 295-384 Zbl0658.10034MR960949
- H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (1989), 115-134, Johns Hopkins Univ. Press, Baltimore, MD Zbl0782.11017MR1463699
- H. Hida, On nearly ordinary Hecke algebras for over totally real fields, Algebraic number theory (1989), 139-169, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA Zbl0742.11026MR1097614
- H. Hida, p-adic automouphism forms on Shimura varieties, (2004), Springer-Verlag Zbl1055.11032MR2055355
- H. Hida, Hilbert modular forms and Iwasawa theory, (2006), Oxford University Press Zbl1122.11030MR2243770
- H. Hida, The Iwasawa -invariant of -adic Hecke -functions, Ann. of Math. 172 (2010), 41-137 Zbl1223.11131MR2680417
- H. Hida, Geometric Modular Forms and Elliptic Curves, (2012), World Scientific, Singapore Zbl1254.11055MR1794402
- N. Katz, -adic properties of modular schemes and modular forms, Modular functions of one variable III 350 (1973), 69-190, Springer, Berlin Zbl0271.10033MR447119
- N. M. Katz, -adic -functions for CM fields, Invent. Math. 49 (1978), 199-297 Zbl0417.12003MR513095
- N. M. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976-78) 868 (1981), 138-202, Springer, Berlin-New York Zbl0477.14007MR638600
- D. Mumford, Geometric Invariant Theory, 34 (1965), Springer-Verlag, Berlin-New York Zbl0797.14004MR214602
- D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972), 239-272 Zbl0241.14020MR352106
- M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), 255-335 Zbl0386.14006MR515050
- K. A. Ribet, Galois action on division points of abelian varieties with real multiplications, Amer. J. Math. 98 (1976), 751-804 Zbl0348.14022MR457455
- J-P. Serre, J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1965), 492-517 Zbl0172.46101MR236190
- G. Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. 78 (1963), 149-192 Zbl0142.05402MR156001
- J. Tate, Number theoretic background, Automorphic forms, representations and L-functions (1977), 3-26 Zbl0422.12007MR546607
- A. Wiles, On -adic representations for totally real fields, Ann. of Math. 123 (1986), 407-456 Zbl0613.12013MR840720
- A. Wiles, On ordinary -adic representations associated to modular forms, Invent. math. 94 (1988), 529-573 Zbl0664.10013MR969243
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.