Local Indecomposability of Hilbert Modular Galois Representations

Bin Zhao[1]

  • [1] Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 4, page 1521-1560
  • ISSN: 0373-0956

Abstract

top
We prove the indecomposability of the Galois representation restricted to the p -decomposition group attached to a non CM nearly p -ordinary weight two Hilbert modular form over a totally real field F under the assumption that either the degree of F over is odd or the automorphic representation attached to the Hilbert modular form is square integrable at some finite place of F .

How to cite

top

Zhao, Bin. "Local Indecomposability of Hilbert Modular Galois Representations." Annales de l’institut Fourier 64.4 (2014): 1521-1560. <http://eudml.org/doc/275427>.

@article{Zhao2014,
abstract = {We prove the indecomposability of the Galois representation restricted to the $p$-decomposition group attached to a non CM nearly $p$-ordinary weight two Hilbert modular form over a totally real field $F$ under the assumption that either the degree of $F$ over $\mathbb\{Q\}$ is odd or the automorphic representation attached to the Hilbert modular form is square integrable at some finite place of $F$.},
affiliation = {Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA},
author = {Zhao, Bin},
journal = {Annales de l’institut Fourier},
keywords = {Galois representation; Hilbert modular forms; complex multiplication; modular Shimura varieties},
language = {eng},
number = {4},
pages = {1521-1560},
publisher = {Association des Annales de l’institut Fourier},
title = {Local Indecomposability of Hilbert Modular Galois Representations},
url = {http://eudml.org/doc/275427},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Zhao, Bin
TI - Local Indecomposability of Hilbert Modular Galois Representations
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 4
SP - 1521
EP - 1560
AB - We prove the indecomposability of the Galois representation restricted to the $p$-decomposition group attached to a non CM nearly $p$-ordinary weight two Hilbert modular form over a totally real field $F$ under the assumption that either the degree of $F$ over $\mathbb{Q}$ is odd or the automorphic representation attached to the Hilbert modular form is square integrable at some finite place of $F$.
LA - eng
KW - Galois representation; Hilbert modular forms; complex multiplication; modular Shimura varieties
UR - http://eudml.org/doc/275427
ER -

References

top
  1. B. Balasubramanyam, E. Ghate, V. Vatsal, On local Galois representations associated to ordinary Hilbert modular forms Zbl1307.11067
  2. M. Brakočević, Anticyclotomic p -adic L -function of central critical Rankin-Selberg L -value 
  3. H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), 409-468 Zbl0616.10025MR870690
  4. R. Coleman, Classical and overconvergent modular forms, Invent. Math. 124 (1996), 215-241 Zbl0851.11030MR1369416
  5. B. Conrad, C.-L. Chai, F. Oort, CM Liftings, (2011), book manuscript 
  6. A.J. de Jong, R. Noot, Jacobians with complex multiplication, Arithmetic Algebraic Geometry 89 (1991), 177-192, G. van der Geer, F. Oort and J.Steenbrink, Boston Zbl0732.14014
  7. P. Deligne, G. Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math. 90 (1994), 59-79 Zbl0826.14027MR1266495
  8. M. Emerton, A p -adic variational Hodge conjecture and modular forms with complex multiplication 
  9. G. Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic geometry (1986), 9-27, G. Cornell and J. Silverman, New York Zbl0602.14044MR861971
  10. E. Ghate, Ordinary forms and their local Galois representations, Algebra and number theory (2005), 226-242, Hindustan Book Agency, Delhi Zbl1085.11029MR2193355
  11. E. Ghate, V. Vatsal, On the local behaviour of ordinary Λ -adic representations, Ann. Inst. Fourier (Grenoble) 54 (2004), 2143-2162 Zbl1131.11341MR2139691
  12. E. Goren, Lectures on Hilbert Modular Varieties and Modular Forms, (2001), American Mathematical Soc. Zbl0986.11037MR1863355
  13. F. Gouvêa, B. Mazur, Families of modular eigenforms, Math. Comp. 58 (1992), 793-805 Zbl0773.11030MR1122070
  14. H. Hida, Elliptic Curves and Arithmetic Invariant Zbl1284.11001
  15. H. Hida, Local indecomposability of Tate modules of non CM abelian varieties with real multiplication Zbl1284.14033MR3037789
  16. H. Hida, On abelian varieties with complex multiplication as factors of the Jacobians of Shimura curves, Amer. J. Math. 103 (1981), 727-776 Zbl0477.14024MR623136
  17. H. Hida, On p -adic Hecke algebras for G L 2 over totally real fields, Ann. of Math. 128 (1988), 295-384 Zbl0658.10034MR960949
  18. H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (1989), 115-134, Johns Hopkins Univ. Press, Baltimore, MD Zbl0782.11017MR1463699
  19. H. Hida, On nearly ordinary Hecke algebras for G L ( 2 ) over totally real fields, Algebraic number theory (1989), 139-169, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA Zbl0742.11026MR1097614
  20. H. Hida, p-adic automouphism forms on Shimura varieties, (2004), Springer-Verlag Zbl1055.11032MR2055355
  21. H. Hida, Hilbert modular forms and Iwasawa theory, (2006), Oxford University Press Zbl1122.11030MR2243770
  22. H. Hida, The Iwasawa μ -invariant of p -adic Hecke L -functions, Ann. of Math. 172 (2010), 41-137 Zbl1223.11131MR2680417
  23. H. Hida, Geometric Modular Forms and Elliptic Curves, (2012), World Scientific, Singapore Zbl1254.11055MR1794402
  24. N. Katz, p -adic properties of modular schemes and modular forms, Modular functions of one variable III 350 (1973), 69-190, Springer, Berlin Zbl0271.10033MR447119
  25. N. M. Katz, p -adic L -functions for CM fields, Invent. Math. 49 (1978), 199-297 Zbl0417.12003MR513095
  26. N. M. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976-78) 868 (1981), 138-202, Springer, Berlin-New York Zbl0477.14007MR638600
  27. D. Mumford, Geometric Invariant Theory, 34 (1965), Springer-Verlag, Berlin-New York Zbl0797.14004MR214602
  28. D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972), 239-272 Zbl0241.14020MR352106
  29. M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), 255-335 Zbl0386.14006MR515050
  30. K. A. Ribet, Galois action on division points of abelian varieties with real multiplications, Amer. J. Math. 98 (1976), 751-804 Zbl0348.14022MR457455
  31. J-P. Serre, J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1965), 492-517 Zbl0172.46101MR236190
  32. G. Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. 78 (1963), 149-192 Zbl0142.05402MR156001
  33. J. Tate, Number theoretic background, Automorphic forms, representations and L-functions (1977), 3-26 Zbl0422.12007MR546607
  34. A. Wiles, On p -adic representations for totally real fields, Ann. of Math. 123 (1986), 407-456 Zbl0613.12013MR840720
  35. A. Wiles, On ordinary λ -adic representations associated to modular forms, Invent. math. 94 (1988), 529-573 Zbl0664.10013MR969243

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.