Sur les représentations l -adiques associées aux formes modulaires de Hilbert

Henri Carayol

Annales scientifiques de l'École Normale Supérieure (1986)

  • Volume: 19, Issue: 3, page 409-468
  • ISSN: 0012-9593

How to cite

top

Carayol, Henri. "Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert." Annales scientifiques de l'École Normale Supérieure 19.3 (1986): 409-468. <http://eudml.org/doc/82181>.

@article{Carayol1986,
author = {Carayol, Henri},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-adic representations; cuspidal automorphic representation; Hilbert modular forms; base change for GL(2); Weil curves over Q},
language = {fre},
number = {3},
pages = {409-468},
publisher = {Elsevier},
title = {Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert},
url = {http://eudml.org/doc/82181},
volume = {19},
year = {1986},
}

TY - JOUR
AU - Carayol, Henri
TI - Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 3
SP - 409
EP - 468
LA - fre
KW - -adic representations; cuspidal automorphic representation; Hilbert modular forms; base change for GL(2); Weil curves over Q
UR - http://eudml.org/doc/82181
ER -

References

top
  1. [B.W.] A. BOREL et N. WALLACH, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups (Ann. of Math. Studies, Princeton University Press, 1980). Zbl0443.22010MR83c:22018
  2. [Ca.1] H. CARAYOL, Sur la mauvaise réduction des courbes de Shimura (C. R. Acad. Sc., Paris, t. 296, série I, 1983, p. 557). Zbl0599.14019MR85c:11050
  3. [Ca.2] H. CARAYOL, Sur les représentations l-adiques attachées aux formes modulaires de Hilbert (C. R. Acad. Sc., Paris, t. 296, série I, 1983, p. 629). Zbl0537.10018MR85e:11039
  4. [Ca.3] H. CARAYOL, Sur la mauvaise réduction des courbes de Shimura [Compositio Math. (à paraître)]. Zbl0607.14021
  5. [D.1] P. DELIGNE, Formes modulaires et représentations de GL2, Antwerp II (Lecture Notes, vol. n° 349, Springer-Verlag, 1973, p. 55-106). Zbl0271.10032MR50 #240
  6. [D.2] P. DELIGNE, Lettre à Piatetskii-Shapiro, 1973. 
  7. [D.M.] P. DELIGNE et D. MUMFORD, On the Irreducibility of the Space of Curves of a Given Genus (Publ. Math. I.H.E.S., n° 36, 1968). Zbl0181.48803
  8. [Dr.1] V. G. DRINFEL'D, Elliptic Modules (Math. U.S.S.R., Sbornik, vol. 23, n° 4, 1974). MR52 #5580
  9. [Dr.2] V. G. DRINFEL'D, Coverings of p-Adic Symmetric Regions (Funct. Anal. Appl., vol. 10, 1976, p. 29). Zbl0346.14010MR54 #10281
  10. [Ge] S. GELBART, Automorphic Functions on Adele Groups (Ann. of Math. Studies, n° 83, Princeton Univ. Press, Princeton, 1975). Zbl0329.10018MR52 #280
  11. [J.L.] H. JACQUET et R. P. LANGLANDS, Automorphic Forms on GL (2) (Lecture Notes in Math., vol. n° 114, Springer-Verlag, 1970). Zbl0236.12010MR53 #5481
  12. [J.P.S.S.] H. JACQUET, I. I. PIATETSKII, SHAPIRO et J. SHALIKA, Relèvement cubique non normal (C. R. Acad. Sc., Paris, t. 292, série I, 1981, p. 567). Zbl0475.12017MR82i:10035
  13. [Ku] Ph. KUTZKO, The Local Langlands Conjecture for GL (2) (Ann. of Math., vol. 112, 1980, p. 381). Zbl0469.22013
  14. [L.1] R. P. LANGLANDS, Modular Forms and l-adic Representations, Antwerp II (Lecture Notes, n° 349, Springer-Verlag, 1973, p. 361-500). Zbl0279.14007MR50 #7095
  15. [L.2] R. P. LANGLANDS, Base Change for GL (2) (Annals of Math. Studies, Princeton University Press, 1980). Zbl0444.22007MR82a:10032
  16. [L.3] R. P. LANGLANDS, On the Zeta Functions of Some Simple Shimura Varietes (Canad. J. Math., vol. 31, n° 6, 1979, p. 1121). Zbl0444.14016
  17. [Og] A. P. OGG, Elliptic Curves and Wild Ramification (Amer. J. of Math., vol. 89, 1967, p. 1-21). Zbl0147.39803MR34 #7509
  18. [Oh] M. OHTA, On the Zeta Function of an Abelian Scheme Over the Shimura Curve (Japan. J. Math., vol. 9, 1983, p. 1-26). Zbl0527.10023MR85j:11067
  19. [P.S.] I. I. PIATETSKII-SHAPIRO, Zeta Functions of Modular Curves (Lecture Notes in Math., n° 349, Springer-Verlag, 1973, p. 317). Zbl0308.14004MR49 #2744
  20. [R.T.] J. D. ROGAWSKI et J. B. TUNNELL, On Artin L-Functions Associated to Hilbert Modular Forms of Weight One (Inv. Math., vol. 74, 1983, p. 1-42). Zbl0523.12009MR85i:11044
  21. [Ta] J. TATE, Number Theoretic Background, in Automorphic Forms, Representations and L-Functions (Proc. Symp. Pure Math., vol. 33, part. 2, American Mathematical Society, Providence, Rhode Island, 1979). Zbl0422.12007
  22. [Tu.1] J. B. TUNNELL, On the Local Langlands Conjecture for GL (2) (Inv. Math., vol. 46, 1978, p. 179-200). Zbl0385.12006MR57 #16262
  23. [Tu.2] J. B. TUNNELL, Artin's Conjecture for Representations of Octahedral Type (Bull. Amer. Math. Soc., vol. 5, n° 2, sept. 1981, p. 173). Zbl0475.12016MR82j:12015
  24. [W] J. L. WALDSPURGER, Quelques propriétés arithmétiques de certaines formes automorphes sur GL (2) (Compositio Math., vol. 54, n° 2, 1985, p. 121-171). Zbl0567.10022MR87g:11061a

Citations in EuDML Documents

top
  1. Jared Weinstein, The local Jacquet-Langlands correspondence via Fourier analysis
  2. Ahmed Abbes, Emmanuel Ullmo, À propos de la conjecture de Manin pour les courbes elliptiques modulaires
  3. P. Bayer, J. C. Lario, On Galois representations defined by torsion points of modular elliptic curves
  4. Laurent Clozel, Nombre de points des variétés de Shimura sur un corps fini
  5. C.M. Skinner, Andrew J. Wiles, Residually reductible representations and modular forms
  6. Christophe Breuil, Une remarque sur les représentations locales p -adiques et les congruences entre formes modulaires de Hilbert
  7. Bin Zhao, Local Indecomposability of Hilbert Modular Galois Representations
  8. Joseph Oesterlé, Nouvelles approches du «théorème» de Fermat
  9. Bas Edixhoven, Rational elliptic curves are modular
  10. Jean-Pierre Serre, Travaux de Wiles (et Taylor, ...), partie I

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.