An alternative description of the Drinfeld -adic half-plane
Stephen Kudla[1]; Michael Rapoport[2]
- [1] University of Toronto Department of Mathematics 40 St. George St., BA6290 Toronto, Ontario, M5S 2E4 (Canada)
- [2] Mathematisches Institut der Universität Bonn Endenicher Allee 60 53115 Bonn (Allemagne)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 3, page 1203-1228
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKudla, Stephen, and Rapoport, Michael. "An alternative description of the Drinfeld $p$-adic half-plane." Annales de l’institut Fourier 64.3 (2014): 1203-1228. <http://eudml.org/doc/275434>.
@article{Kudla2014,
abstract = {We show that the Deligne formal model of the Drinfeld $p$-adic half-plane relative to a local field $F$ represents a moduli problem of polarized $O_F$-modules with an action of the ring of integers in a quadratic extension $E$ of $F$. The proof proceeds by establishing a comparison isomorphism with the Drinfeld moduli problem. This isomorphism reflects the accidental isomorphism of $\{\rm SL\}_2(F)$ and $\{\rm SU\}(C)(F)$ for a two-dimensional split hermitian space $C$ for $E/F$.},
affiliation = {University of Toronto Department of Mathematics 40 St. George St., BA6290 Toronto, Ontario, M5S 2E4 (Canada); Mathematisches Institut der Universität Bonn Endenicher Allee 60 53115 Bonn (Allemagne)},
author = {Kudla, Stephen, Rapoport, Michael},
journal = {Annales de l’institut Fourier},
keywords = {Drinfeld $p$-adic half-plane; Bruhat-Tits tree; Drinfeld half plane; local fields; Drinfeld moduli problem},
language = {eng},
number = {3},
pages = {1203-1228},
publisher = {Association des Annales de l’institut Fourier},
title = {An alternative description of the Drinfeld $p$-adic half-plane},
url = {http://eudml.org/doc/275434},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Kudla, Stephen
AU - Rapoport, Michael
TI - An alternative description of the Drinfeld $p$-adic half-plane
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1203
EP - 1228
AB - We show that the Deligne formal model of the Drinfeld $p$-adic half-plane relative to a local field $F$ represents a moduli problem of polarized $O_F$-modules with an action of the ring of integers in a quadratic extension $E$ of $F$. The proof proceeds by establishing a comparison isomorphism with the Drinfeld moduli problem. This isomorphism reflects the accidental isomorphism of ${\rm SL}_2(F)$ and ${\rm SU}(C)(F)$ for a two-dimensional split hermitian space $C$ for $E/F$.
LA - eng
KW - Drinfeld $p$-adic half-plane; Bruhat-Tits tree; Drinfeld half plane; local fields; Drinfeld moduli problem
UR - http://eudml.org/doc/275434
ER -
References
top- J.-F. Boutot, H. Carayol, Uniformisation -adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfelʼd, Astérisque 7 (1991), 45-158 (1992) Zbl0781.14010MR1141456
- V. G. Drinfelʼd, Coverings of -adic symmetric domains, Funkcional. Anal. i Priložen. 10 (1976), 29-40 Zbl0346.14010MR422290
- Stephen Kudla, Michael Rapoport, New cases of -adic uniformization
- Stephen Kudla, Michael Rapoport, Special cycles on unitary Shimura varieties, III
- Stephen Kudla, Michael Rapoport, Special cycles on unitary Shimura varieties I. Unramified local theory, Invent. Math. 184 (2011), 629-682 Zbl1229.14020MR2800697
- Georgios Pappas, On the arithmetic moduli schemes of PEL Shimura varieties, J. Algebraic Geom. 9 (2000), 577-605 Zbl0978.14023MR1752014
- Georgios Pappas, Michael Rapoport, B. Smithling, Local models of Shimura varieties, I. Geometry and combinatorics, Handbook of moduli, vol. III 26 (2013), 135-217, FarkasG.G. Zbl1322.14014MR3135437
- Michael Rapoport, Th. Zink, Period spaces for -divisible groups, 141 (1996), Princeton University Press, Princeton, NJ Zbl0873.14039MR1393439
- Michel Raynaud, Schémas en groupes de type , Bull. Soc. Math. France 102 (1974), 241-280 Zbl0325.14020MR419467
- U. Terstiege, Intersections of special cycles on the Shimura variety for GU Zbl06237588
- Inken Vollaard, The supersingular locus of the Shimura variety for , Canad. J. Math. 62 (2010), 668-720 Zbl1205.14028MR2666394
- Inken Vollaard, Torsten Wedhorn, The supersingular locus of the Shimura variety of II, Invent. Math. 184 (2011), 591-627 Zbl1227.14027MR2800696
- S. Wilson, The supersingular locus of the Shimura variety for GU in the ramified case, (2011)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.