Systems with Coulomb interactions

Sylvia Serfaty[1]

  • [1] UPMC Université Paris 6 UMR 7598 Laboratoire Jacques-Louis Lions Paris, F-75005 France & Courant Institute New York University 251 Mercer street NY NY 10012, USA

Journées Équations aux dérivées partielles (2014)

  • Volume: 154, Issue: 3, page 1-23
  • ISSN: 0752-0360

Abstract

top
Systems with Coulomb and logarithmic interactions arise in various settings: an instance is the classical Coulomb gas which in some cases happens to be a random matrix ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where one observes in certain regimes the emergence of densely packed point vortices forming perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete points which arise in approximation theory. In this review, we describe tools to study such systems and derive a next order (beyond mean field limit) “renormalized energy" that governs microscopic patterns of points. We present the derivation of the limiting problem and the question of its minimization and its link with the Abrikosov lattice and crystallization questions. We also discuss generalizations to Riesz interaction energies and the statistical mechanics of such systems.

How to cite

top

Serfaty, Sylvia. "Systems with Coulomb interactions." Journées Équations aux dérivées partielles 154.3 (2014): 1-23. <http://eudml.org/doc/275435>.

@article{Serfaty2014,
abstract = {Systems with Coulomb and logarithmic interactions arise in various settings: an instance is the classical Coulomb gas which in some cases happens to be a random matrix ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where one observes in certain regimes the emergence of densely packed point vortices forming perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete points which arise in approximation theory. In this review, we describe tools to study such systems and derive a next order (beyond mean field limit) “renormalized energy" that governs microscopic patterns of points. We present the derivation of the limiting problem and the question of its minimization and its link with the Abrikosov lattice and crystallization questions. We also discuss generalizations to Riesz interaction energies and the statistical mechanics of such systems.},
affiliation = {UPMC Université Paris 6 UMR 7598 Laboratoire Jacques-Louis Lions Paris, F-75005 France & Courant Institute New York University 251 Mercer street NY NY 10012, USA},
author = {Serfaty, Sylvia},
journal = {Journées Équations aux dérivées partielles},
keywords = {Ginzburg-Landau equations; superconductivity; vortices; Coulomb gas; one-component plasma; jellium; renormalized energy},
language = {eng},
number = {3},
pages = {1-23},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Systems with Coulomb interactions},
url = {http://eudml.org/doc/275435},
volume = {154},
year = {2014},
}

TY - JOUR
AU - Serfaty, Sylvia
TI - Systems with Coulomb interactions
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
VL - 154
IS - 3
SP - 1
EP - 23
AB - Systems with Coulomb and logarithmic interactions arise in various settings: an instance is the classical Coulomb gas which in some cases happens to be a random matrix ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where one observes in certain regimes the emergence of densely packed point vortices forming perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete points which arise in approximation theory. In this review, we describe tools to study such systems and derive a next order (beyond mean field limit) “renormalized energy" that governs microscopic patterns of points. We present the derivation of the limiting problem and the question of its minimization and its link with the Abrikosov lattice and crystallization questions. We also discuss generalizations to Riesz interaction energies and the statistical mechanics of such systems.
LA - eng
KW - Ginzburg-Landau equations; superconductivity; vortices; Coulomb gas; one-component plasma; jellium; renormalized energy
UR - http://eudml.org/doc/275435
ER -

References

top
  1. G. Alberti, R. Choksi, F. Otto, Uniform Energy Distribution for an Isoperimetric Problem With Long-range Interactions. Journal Amer. Math. Soc. 22, no 2 (2009), 569-605. Zbl1206.49046MR2476783
  2. Y. Ameur, J. Ortega-Cerdà, Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates, J. Funct. Anal.263 (2012), no. 7, 1825–1861. Zbl1256.31001MR2956927
  3. F. Bethuel, H. Brezis, F. Hélein, Ginzburg-Landau Vortices, Progress in Nonlinear Partial Differential Equations and Their Applications, Birkhäuser, 1994. Zbl0802.35142MR1269538
  4. M. E. Becker, Multiparameter groups of measure-preserving transformations: a simple proof of Wiener’s ergodic theorem. Ann Probab.9, No 3 (1981), 504–509. Zbl0468.28020MR614635
  5. L. Bétermin, Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere, arXiv:1404.4485. 
  6. P. Bourgade, L. Erdös, H.-T. Yau, Universality of general β -ensembles, Duke Math. J., 163, (2014), no. 6, 1127–1190. Zbl1298.15040MR3192527
  7. P. Bourgade, L. Erdös, H. T. Yau, Bulk Universality of General β -ensembles with non-convex potential, J. Math. Phys.53 (2012), no. 9, 095221, 19 pp. Zbl1278.82032MR2905803
  8. J. S. Brauchart, D. P. Hardin, E. B. Saff, The next order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Recent advances in orthogonal polynomials, special functions, and their applications, 31–61, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012. Zbl1318.31011MR2964138
  9. S. Borodachev, D. H. Hardin, E.B. Saff, Minimal Discrete Energy on the Sphere and Other Manifolds, forthcoming. 
  10. G. Ben Arous, A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy, Probab. Theory Related Fields108 (1997), no. 4, 517–542. Zbl0954.60029MR1465640
  11. F. Bethuel, T. Rivière, Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995), no. 3, 243–303. Zbl0842.35119MR1340265
  12. G. Ben Arous, O. Zeitouni, Large deviations from the circular law. ESAIM Probab. Statist. 2 (1998), 123–174. Zbl0916.60022MR1660943
  13. L. A. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. PDE32, (2007), no 7-9, 1245–1260. Zbl1143.26002MR2354493
  14. D. Chafaï, N. Gozlan, P-A. Zitt, First order global asymptotics for confined particles with singular pair repulsion, to appear in Annals Appl. Proba. Zbl1304.82050MR3262506
  15. G. Choquet, Diamètre transfini et comparaison de diverses capacités, Technical report, Faculté des Sciences de Paris, (1958). 
  16. P.H. Diananda, Notes on two lemmas concerning the Epstein zeta-function, Proc. Glasgow Math. Assoc., 6 (1964), 202–204. Zbl0128.04501MR168537
  17. F. Dyson, Statistical theory of the energy levels of a complex system. Part I, J. Math. Phys.3, 140–156 (1962); Part II, ibid. 157–165; Part III, ibid. 166–175 Zbl0105.41604
  18. P. J. Forrester, Log-gases and random matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, 2010. Zbl1217.82003MR2641363
  19. O. Frostman, Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Mat. Sem. Univ. Lund 3, 115 s (1935). Zbl61.1262.02
  20. B. Jancovici, J. Lebowitz, G. Manificat, Large charge fluctuations in classical Coulomb systems, J. Stat. Phys.72, no. 3-4 (1993), 773–787. Zbl1101.82307MR1239571
  21. T. Leblé, S. Serfaty, Large Deviation Principle for the empirical field of log and Riesz gases, in preparation. 
  22. E.H. Lieb, J.L. Lebowitz, Existence of thermodynamics for real matter with Coulomb forces, Phys. Rev. Lett.22 (1969), 631-634. 
  23. E. H. Lieb, H. Narnhofer, The thermodynamic limit for jellium. J. Statist. Phys.12 (1975), 291–310. Zbl0973.82500MR401029
  24. H. L. Montgomery, Minimal theta functions. Glasgow Math J. 30, (1988), No. 1, 75-85, (1988). Zbl0639.10017MR925561
  25. O. Penrose, E.R. Smith, Thermodynamic Limit for Classical Systems with Coulomb Interactions in a Constant External Field, Comm. Math. Phys.26, no 1, (1972), 53–77. MR303866
  26. M. Petrache, S. Serfaty, Next order asymptotics and renormalized energy for Riesz interactions, arXiv:1409.7534. 
  27. D. Petz, F. Hiai, Logarithmic energy as an entropy functional, Advances in differential equations and mathematical physics, 205–221, Contemp. Math., 217, Amer. Math. Soc., Providence, RI, 1998. Zbl0893.15011MR1606719
  28. N. Rougerie, S. Serfaty, Higher Dimensional Coulomb Gases and Renormalized Energy Functionals, to appear in Comm. Pure Appl. Math. Zbl06551872
  29. S. Rota Nodari, S. Serfaty, Renormalized energy equidistribution and local charge balance in 2D Coulomb systems, to appear in Inter. Math. Research Notices. Zbl1321.82029
  30. E. Saff, A. Kuijlaars, Distributing many points on a sphere. Math. Intelligencer19 (1997), no. 1, 5–11. Zbl0901.11028MR1439152
  31. E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenchaften 316, Springer-Verlag, Berlin, 1997. Zbl0881.31001MR1485778
  32. E. Sandier, S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Birkhäuser, 2007. Zbl1112.35002MR2279839
  33. E. Sandier, S. Serfaty, From the Ginzburg-Landau Model to Vortex Lattice Problems, Comm. Math. Phys.313, 635-743 (2012). Zbl1252.35034MR2945619
  34. E. Sandier, S. Serfaty, 2D Coulomb gases and the renormalized energy, to appear in Annals of Proba. Zbl1328.82006
  35. E. Sandier, S. Serfaty, 1D Log Gases and the Renormalized Energy: Crystallization at Vanishing Temperature, to appear in Proba. Theor. Rel. Fields. Zbl1327.82005
  36. R. Sari, D. Merlini, On the ν -dimensional one-component classical plasma: the thermodynamic limit problem revisited. J. Statist. Phys. 14 (1976), no. 2, 91–100. MR449401
  37. B. Simon, The Christoffel-Darboux kernel, in “Perspectives in PDE, Harmonic Analysis and Applications," a volume in honor of V.G. Maz’ya’s 70th birthday, Proc. Symp. Pure Math.79 (2008), 295–335. Zbl1159.42020MR2500498
  38. S. Serfaty, Coulomb Gases and Ginzburg-Landau Vortices, Zurich Lecture Notes in Mathematics, Eur. Math. Soc., forthcoming, arXiv:1403.6860. 
  39. E. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math.62 (1955), 548–564. Zbl0067.08403MR77805

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.