The tautological ring of M 1 , n c t

Mehdi Tavakol[1]

  • [1] Universiteit van Amsterdam Instituut voor Wiskunde Korteweg de Vries (Netherlands

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 7, page 2751-2779
  • ISSN: 0373-0956

Abstract

top
We describe the tautological ring of the moduli space of stable n -pointed curves of genus one of compact type. It is proven that it is a Gorenstein algebra.

How to cite

top

Tavakol, Mehdi. "The tautological ring of $M_{1,n}^{ct}$." Annales de l’institut Fourier 61.7 (2011): 2751-2779. <http://eudml.org/doc/275437>.

@article{Tavakol2011,
abstract = {We describe the tautological ring of the moduli space of stable $n$-pointed curves of genus one of compact type. It is proven that it is a Gorenstein algebra.},
affiliation = {Universiteit van Amsterdam Instituut voor Wiskunde Korteweg de Vries (Netherlands},
author = {Tavakol, Mehdi},
journal = {Annales de l’institut Fourier},
keywords = {Moduli of curves; tautological rings; moduli of curves},
language = {eng},
number = {7},
pages = {2751-2779},
publisher = {Association des Annales de l’institut Fourier},
title = {The tautological ring of $M_\{1,n\}^\{ct\}$},
url = {http://eudml.org/doc/275437},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Tavakol, Mehdi
TI - The tautological ring of $M_{1,n}^{ct}$
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2751
EP - 2779
AB - We describe the tautological ring of the moduli space of stable $n$-pointed curves of genus one of compact type. It is proven that it is a Gorenstein algebra.
LA - eng
KW - Moduli of curves; tautological rings; moduli of curves
UR - http://eudml.org/doc/275437
ER -

References

top
  1. E. Arbarello, M. Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. (1998), 97-127 (1999) Zbl0991.14012MR1733327
  2. M. Cornalba, On the projectivity of the moduli spaces of curves, J. Reine Angew. Math. 443 (1993), 11-20 Zbl0781.14017MR1241126
  3. C. Faber, A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties (1999), 109-129, Vieweg, Braunschweig Zbl0978.14029MR1722541
  4. C. Faber, Hodge integrals, tautological classes and Gromov-Witten theory, Proceedings of the Workshop “Algebraic Geometry and Integrable Systems related to String Theory” (Kyoto, 2000) (2001), 78-87 Zbl1322.14084MR1905884
  5. C. Faber, A remark on a conjecture of Hain and Looijenga, (2008) Zbl1278.14037
  6. C. Faber, R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J. 48 (2000), 215-252 Zbl1090.14005MR1786488
  7. C. Faber, R. Pandharipande, Hodge integrals, partition matrices, and the λ g conjecture, Annals of mathematics (2003), 97-124 Zbl1058.14046MR1954265
  8. C. Faber, R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), 13-49 Zbl1084.14054MR2120989
  9. W. Fulton, R. MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), 183-225 Zbl0820.14037MR1259368
  10. E. Getzler, Intersection theory on M ¯ 1 , 4 and elliptic Gromov-Witten invariants, Journal of the American Mathematical Society 10 (1997) Zbl0909.14002MR1451505
  11. T. Graber, R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003), 93-109 Zbl1079.14511MR1960923
  12. T. Graber, R. Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J. 130 (2005), 1-37 Zbl1088.14007MR2176546
  13. M. Green, P. Griffiths, An interesting 0-cycle, Duke Math. J. 119 (2003), 261-313 Zbl1058.14014MR1997947
  14. R. Hain, E. Looijenga, Mapping class groups and moduli spaces of curves, Algebraic geometry—Santa Cruz 1995 62 (1997), 97-142, Amer. Math. Soc., Providence, RI Zbl0914.14013MR1492535
  15. P. Hanlon, D. Wales, On the decomposition of Brauer’s centralizer algebras, J. Algebra 121 (1989), 409-445 Zbl0695.20026MR992775
  16. S. Keel, Intersection theory of moduli space of stable n -pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545-574 Zbl0768.14002MR1034665
  17. R. Pandharipande, A geometric construction of Getzler’s elliptic relation, Math. Ann. 313 (1999), 715-729 Zbl0933.14035MR1686935

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.