Tunnel effect and symmetries for non-selfadjoint operators

Michael Hitrik[1]

  • [1] Department of Mathematiscs University of California, Los Angeles Los Angeles, CA 90095–1555, United States

Journées Équations aux dérivées partielles (2013)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
We study low lying eigenvalues for non-selfadjoint semiclassical differential operators, where symmetries play an important role. In the case of the Kramers-Fokker-Planck operator, we show how the presence of certain supersymmetric and 𝒫𝒯 -symmetric structures leads to precise results concerning the reality and the size of the exponentially small eigenvalues in the semiclassical (here the low temperature) limit. This analysis also applies sometimes to chains of oscillators coupled to two heat baths, but when the temperatures of the baths are different, we show that the supersymmetric approach may break down. We also discuss 𝒫𝒯 –symmetric quadratic differential operators with real spectrum and characterize those that are similar to selfadjoint operators. This talk is based on joint works with Emanuela Caliceti, Sandro Graffi, Frédéric Hérau, and Johannes Sjöstrand.

How to cite

top

Hitrik, Michael. "Tunnel effect and symmetries for non-selfadjoint operators." Journées Équations aux dérivées partielles (2013): 1-12. <http://eudml.org/doc/275439>.

@article{Hitrik2013,
abstract = {We study low lying eigenvalues for non-selfadjoint semiclassical differential operators, where symmetries play an important role. In the case of the Kramers-Fokker-Planck operator, we show how the presence of certain supersymmetric and $\mathcal\{PT\}$-symmetric structures leads to precise results concerning the reality and the size of the exponentially small eigenvalues in the semiclassical (here the low temperature) limit. This analysis also applies sometimes to chains of oscillators coupled to two heat baths, but when the temperatures of the baths are different, we show that the supersymmetric approach may break down. We also discuss $\mathcal\{PT\}$–symmetric quadratic differential operators with real spectrum and characterize those that are similar to selfadjoint operators. This talk is based on joint works with Emanuela Caliceti, Sandro Graffi, Frédéric Hérau, and Johannes Sjöstrand.},
affiliation = {Department of Mathematiscs University of California, Los Angeles Los Angeles, CA 90095–1555, United States},
author = {Hitrik, Michael},
journal = {Journées Équations aux dérivées partielles},
keywords = {Non-selfadjoint; supersymmetry; Kramers-Fokker-Planck; tunneling; exponentially small eigenvalue; chain of oscillators; semiclassical limit; $\mathcal\{PT\}$–symmetry; quadratic operator; Hamilton map},
language = {eng},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Tunnel effect and symmetries for non-selfadjoint operators},
url = {http://eudml.org/doc/275439},
year = {2013},
}

TY - JOUR
AU - Hitrik, Michael
TI - Tunnel effect and symmetries for non-selfadjoint operators
JO - Journées Équations aux dérivées partielles
PY - 2013
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - We study low lying eigenvalues for non-selfadjoint semiclassical differential operators, where symmetries play an important role. In the case of the Kramers-Fokker-Planck operator, we show how the presence of certain supersymmetric and $\mathcal{PT}$-symmetric structures leads to precise results concerning the reality and the size of the exponentially small eigenvalues in the semiclassical (here the low temperature) limit. This analysis also applies sometimes to chains of oscillators coupled to two heat baths, but when the temperatures of the baths are different, we show that the supersymmetric approach may break down. We also discuss $\mathcal{PT}$–symmetric quadratic differential operators with real spectrum and characterize those that are similar to selfadjoint operators. This talk is based on joint works with Emanuela Caliceti, Sandro Graffi, Frédéric Hérau, and Johannes Sjöstrand.
LA - eng
KW - Non-selfadjoint; supersymmetry; Kramers-Fokker-Planck; tunneling; exponentially small eigenvalue; chain of oscillators; semiclassical limit; $\mathcal{PT}$–symmetry; quadratic operator; Hamilton map
UR - http://eudml.org/doc/275439
ER -

References

top
  1. J.-M. Bismut, The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc. 18 (2005), 379–476. Zbl1065.35098MR2137981
  2. L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure Appl. Math. 27 (1974), 585–639. Zbl0294.35020MR370271
  3. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times, J. Eur. Math. Soc. 6 (2004), 399–424. Zbl1076.82045MR2094397
  4. E. Caliceti, S. Graffi, M. Hitrik, and J. Sjöstrand, Quadratic 𝒫𝒯 –symmetric operators with real spectrum and similarity to self-adjoint operators, J. Phys. A: Math. Theor., 45 (2012), 444007. Zbl1263.81190MR2991874
  5. J.-P. Eckmann, C.-A. Pillet, L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat bath at different temperature, Comm. Math. Phys. 201 (1999), 657–697. Zbl0932.60103MR1685893
  6. B. Helffer, M. Klein, and F. Nier, Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach, Mat. Contemp. 26 (2004), 41–85. Zbl1079.58025MR2111815
  7. B. Helffer and F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, 1862. Springer-Verlag, Berlin, 2005. Zbl1072.35006MR2130405
  8. B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit. I., Comm. Partial Differential Equations 9 (1984), 337–408. Zbl0546.35053MR740094
  9. B. Helffer and J. Sjöstrand, Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation, Ann. Inst. H. Poincaré Phys. Th. 42 (1985), 127–212. Zbl0595.35031MR798695
  10. B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit. III. Interaction through non-resonant wells, Math. Nachr. 124 (1985), 263–313. Zbl0597.35023MR827902
  11. B. Helffer and J. Sjöstrand, Puits multiples en mécanique semi-classique. IV. Etude du complexe de Witten, Comm. Partial Differential Equations, 10 (1985), 245–340. Zbl0597.35024MR780068
  12. F. Hérau, M. Hitrik, and J. Sjöstrand, Tunnel effect for Kramers-Fokker-Planck type operators: return to equilibrium and applications, International Math Res Notices, 15 (2008), Article ID rnn057, 48pp. Zbl1151.35012
  13. F. Hérau, M. Hitrik, and J. Sjöstrand, Tunnel effect and symmetries for Kramers-Fokker-Planck type operators, J. Inst. Math. Jussieu 10 (2011), 567–634. Zbl1223.35246MR2806463
  14. F. Hérau, M. Hitrik, and J. Sjöstrand, Supersymmetric structures for second order differential operators, St. Petersburg Math. J., to appear. Zbl1303.81086MR3114853
  15. F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), 151–218. Zbl1139.82323MR2034753
  16. F. Hérau, J. Sjöstrand, and C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. Partial Differential Equations 30 (2005), 689–760. Zbl1083.35149MR2153513
  17. M. Hitrik and K. Pravda-Starov Spectra and semigroup smoothing for non-elliptic quadratic operators, Math. Ann., 344 (2009), 801–846. Zbl1171.47038MR2507625
  18. H. Risken, The Fokker-Planck equation. Methods of solution and applications, Springer Series in Synergetics, 18 Springer Verlag, Berlin, 1989. Zbl0665.60084MR987631
  19. B. Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. Poincaré Sect. A. (N.S.) 38 (1983), 295–308. Zbl0526.35027MR708966
  20. B. Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling, Ann. of Math. 120 (1984), 89–118. Zbl0626.35070MR750717
  21. J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. för Mat. 12 (1974), 85–130. Zbl0317.35076MR352749
  22. J. Tailleur, S. Tanase-Nicola, J. Kurchan, Kramers equation and supersymmetry, J. Stat. Phys. 122 (2006), 557–595. Zbl1149.81013MR2213943
  23. J. Viola, Spectral projections and resolvent bounds for partially elliptic quadratic differential operators, J. Pseudo-Diff. Op. Appl. 4 (2013), 145–221. Zbl1285.47049
  24. E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661–692. Zbl0499.53056MR683171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.