Lifting the field of norms

Laurent Berger[1]

  • [1] UMPA de l’ENS de Lyon, UMR 5669 du CNRS, IUF 46 allée d’Italie, 69007 Lyon, France

Journal de l’École polytechnique — Mathématiques (2014)

  • Volume: 1, page 29-38
  • ISSN: 2270-518X

Abstract

top
Let K be a finite extension of Q p . The field of norms of a p -adic Lie extension K / K is a local field of characteristic p which comes equipped with an action of Gal ( K / K ) . When can we lift this action to characteristic 0 , along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of ( ϕ , Γ ) -modules, and give a condition for the existence of certain types of lifts.

How to cite

top

Berger, Laurent. "Lifting the field of norms." Journal de l’École polytechnique — Mathématiques 1 (2014): 29-38. <http://eudml.org/doc/275440>.

@article{Berger2014,
abstract = {Let $K$ be a finite extension of $\mathbf\{Q\}_p$. The field of norms of a $p$-adic Lie extension $K_\infty /K$ is a local field of characteristic $p$ which comes equipped with an action of $\mathrm\{Gal\}(K_\infty /K)$. When can we lift this action to characteristic $0$, along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of $(\varphi ,\Gamma )$-modules, and give a condition for the existence of certain types of lifts.},
affiliation = {UMPA de l’ENS de Lyon, UMR 5669 du CNRS, IUF 46 allée d’Italie, 69007 Lyon, France},
author = {Berger, Laurent},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Field of norms; $(\phi ,\Gamma )$-module; $p$-adic representation; anticyclotomic extension; Cohen ring; non-Archimedean dynamical system; field of norms; -module; -adic representation},
language = {eng},
pages = {29-38},
publisher = {École polytechnique},
title = {Lifting the field of norms},
url = {http://eudml.org/doc/275440},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Berger, Laurent
TI - Lifting the field of norms
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 29
EP - 38
AB - Let $K$ be a finite extension of $\mathbf{Q}_p$. The field of norms of a $p$-adic Lie extension $K_\infty /K$ is a local field of characteristic $p$ which comes equipped with an action of $\mathrm{Gal}(K_\infty /K)$. When can we lift this action to characteristic $0$, along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of $(\varphi ,\Gamma )$-modules, and give a condition for the existence of certain types of lifts.
LA - eng
KW - Field of norms; $(\phi ,\Gamma )$-module; $p$-adic representation; anticyclotomic extension; Cohen ring; non-Archimedean dynamical system; field of norms; -module; -adic representation
UR - http://eudml.org/doc/275440
ER -

References

top
  1. B. Chiarellotto, F. Esposito, A note on Fontaine theory using different Lubin-Tate groups, Kodai Math. J. 37 (2014), 196-211 Zbl06300886MR3189521
  2. J.-M. Fontaine, Représentations p -adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II 87 (1990), 249-309, Birkhäuser Boston, Boston, MA Zbl0575.14038MR1106901
  3. J.-M. Fontaine, Le corps des périodes p -adiques, Périodes -adiques (Bures-sur-Yvette, 1988) 223 (1994), 59-111, Société Mathématique de France 
  4. J.-M. Fontaine, Représentations p -adiques semi-stables, Périodes -adiques (Bures-sur-Yvette, 1988) 223 (1994), 113-184, Société Mathématique de France Zbl0865.14009MR1293977
  5. J.-M. Fontaine, J.-P. Wintenberger, Le “corps des normes” de certaines extensions algébriques de corps locaux, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), A367-A370 Zbl0475.12020MR526137
  6. J.-M. Fontaine, J.-P. Wintenberger, Extensions algébriques et corps des normes des extensions APF des corps locaux, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), A441-A444 Zbl0403.12018MR527692
  7. L. Fourquaux, B. Xie, Triangulable 𝒪 F -analytic ( ϕ q , Γ ) -modules of rank 2 , Algebra Number Theory 7 (2013), 2545-2592 Zbl1297.11145MR3194651
  8. M. Kisin, W. Ren, Galois representations and Lubin-Tate groups, Doc. Math. 14 (2009), 441-461 Zbl1246.11112MR2565906
  9. J. Lubin, Non-Archimedean dynamical systems, Compositio Math. 94 (1994), 321-346 Zbl0843.58111MR1310863
  10. A. J. Scholl, Higher fields of norms and ( φ , Γ ) -modules, Doc. Math. (2006), 685-709 Zbl1186.11070MR2290602
  11. S. Sen, Ramification in p -adic Lie extensions, Invent. Math. 17 (1972), 44-50 Zbl0242.12012MR319949
  12. J.-P. Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. École Norm. Sup. (4) 16 (1983), 59-89 Zbl0516.12015MR719763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.