Distributions of truncations of the heat kernel on the complex projective space
Nizar Demni[1]
- [1] Institut de Recherche en Mathématiques de Rennes Université de Rennes 1 Campus de Beaulieu 35042 Rennes FRANCE
Annales mathématiques Blaise Pascal (2014)
- Volume: 21, Issue: 2, page 1-20
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topDemni, Nizar. "Distributions of truncations of the heat kernel on the complex projective space." Annales mathématiques Blaise Pascal 21.2 (2014): 1-20. <http://eudml.org/doc/275449>.
@article{Demni2014,
abstract = {Let $(U_t)_\{t \ge 0\}$ be a Brownian motion valued in the complex projective space $\mathbb\{C\}P^\{N-1\}$. Using unitary spherical harmonics of homogeneous degree zero, we derive the densities of $|U_t^\{1\}|^2$ and of $(|U_t^\{1\}|^2, |U_t^2|^2)$, and express them through Jacobi polynomials in the simplices of $\mathbb\{R\}$ and $\mathbb\{R\}^2$ respectively. More generally, the distribution of $(|U_t^\{1\}|^2, \dots , |U_t^k|^2), \;2 \le k \le N-1$ may be derived using the decomposition of the unitary spherical harmonics under the action of the unitary group $\mathcal\{U\}(N-k+1)$ yet computations become tedious. We also revisit the approach initiated in [13] and based on a partial differential equation (hereafter pde) satisfied by the Laplace transform of the density. When $k=1$, we invert the Laplace transform and retrieve the expression already derived using spherical harmonics. For general $1 \le k \le N-2$, integrations by parts performed on the pde lead to a heat equation in the simplex of $\mathbb\{R\}^k$.},
affiliation = {Institut de Recherche en Mathématiques de Rennes Université de Rennes 1 Campus de Beaulieu 35042 Rennes FRANCE},
author = {Demni, Nizar},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Brownian motion; complex projective space; Dirichlet distribution; Jacobi polynomials in the simplex; unitary spherical harmonics; Jacobi polynomials; simplices; Laplace transform; heat equation},
language = {eng},
month = {7},
number = {2},
pages = {1-20},
publisher = {Annales mathématiques Blaise Pascal},
title = {Distributions of truncations of the heat kernel on the complex projective space},
url = {http://eudml.org/doc/275449},
volume = {21},
year = {2014},
}
TY - JOUR
AU - Demni, Nizar
TI - Distributions of truncations of the heat kernel on the complex projective space
JO - Annales mathématiques Blaise Pascal
DA - 2014/7//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 2
SP - 1
EP - 20
AB - Let $(U_t)_{t \ge 0}$ be a Brownian motion valued in the complex projective space $\mathbb{C}P^{N-1}$. Using unitary spherical harmonics of homogeneous degree zero, we derive the densities of $|U_t^{1}|^2$ and of $(|U_t^{1}|^2, |U_t^2|^2)$, and express them through Jacobi polynomials in the simplices of $\mathbb{R}$ and $\mathbb{R}^2$ respectively. More generally, the distribution of $(|U_t^{1}|^2, \dots , |U_t^k|^2), \;2 \le k \le N-1$ may be derived using the decomposition of the unitary spherical harmonics under the action of the unitary group $\mathcal{U}(N-k+1)$ yet computations become tedious. We also revisit the approach initiated in [13] and based on a partial differential equation (hereafter pde) satisfied by the Laplace transform of the density. When $k=1$, we invert the Laplace transform and retrieve the expression already derived using spherical harmonics. For general $1 \le k \le N-2$, integrations by parts performed on the pde lead to a heat equation in the simplex of $\mathbb{R}^k$.
LA - eng
KW - Brownian motion; complex projective space; Dirichlet distribution; Jacobi polynomials in the simplex; unitary spherical harmonics; Jacobi polynomials; simplices; Laplace transform; heat equation
UR - http://eudml.org/doc/275449
ER -
References
top- R. Aktas, Y. Xu, Sobolev orthogonal polynomials on a simplex, Int. Math. Res. Notice 13 (2013), 3087-3131 Zbl1316.33006MR3073001
- G. E. Andrews, R. Askey, R. Roy, Special functions, (1999), Cambridge University Press, Cambridge Zbl1075.33500MR1688958
- D. Bakry, Remarques sur les semi-groupes de Jacobi, Hommage à P. André Meyer et J. Neveu. Astérisque 236 (1996), 23-39 Zbl0859.47026MR1417973
- A. Benabdallah, Noyau de diffusion sur les espaces homogènes compacts, Bull. Soc. Math. France 101 (1973), 265-283 Zbl0281.35046MR358874
- M. Berger, P. Gauduchon, E. Mazet, Le spectre d’une variété Riemannienne, Lecture Notes in Mathematics (1971), Springer-Verlag Zbl0223.53034MR282313
- C. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and Its Applications (2001), Cambridge University Press, Cambridge Zbl0964.33001MR1827871
- G. Gasper, Banach algebras for Jacobi series and positivity of a kernel, Ann. Math. 95 (1972), 261-280 Zbl0236.33013MR310536
- E. L. Grinberg, Spherical harmonics and integral geometry on projective spaces, Trans. Amer. Math. Soc. 279 (1983), 187-203 Zbl0518.43006MR704609
- F. Hiai, D. Petz, The Semicircle Law, Free Random Variables and Entropy, 77 (2000), A. M. S. Zbl0955.46037MR1746976
- S. P. Karlin, G. McGregor, Classical diffusion processes and total positivity, J. Math. Anal. Appl. 1 (1960), 163-183 Zbl0101.11102MR121844
- T. Koornwinder, The addition formula for Jacobi polynomials II. The Laplace type integral and the product formula, Report TW 133/72. Mathematisch Centrum, Amsterdam (1972) Zbl0247.33018
- T. Koornwinder, The addition formula for Jacobi polynomials III. Completion of the proof, Report TW 135/72. Mathematisch Centrum, Amsterdam (1972) Zbl0247.33019
- I. Nechita, C. Pellegrini, Random pure quantum states via unitary Brownian motion, Electron. Commun. Probab 18 (2013), 1-13 Zbl1337.60204MR3056064
- N. Ya. Vilenkin, Fonctions spéciales et théorie de la représentation des groupes, 33 (1969), Monographies Universitaires de Mathématiques, Dunod Zbl0172.18405
- G. N. Watson, A treatise on the theory of Bessel functions, (1995), Cambridge University Press Zbl0849.33001MR1349110
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.