Noyau de diffusion sur les espaces homogènes compacts

Abdel-Ilah Benabdallah

Bulletin de la Société Mathématique de France (1973)

  • Volume: 101, page 265-283
  • ISSN: 0037-9484

How to cite

top

Benabdallah, Abdel-Ilah. "Noyau de diffusion sur les espaces homogènes compacts." Bulletin de la Société Mathématique de France 101 (1973): 265-283. <http://eudml.org/doc/87210>.

@article{Benabdallah1973,
author = {Benabdallah, Abdel-Ilah},
journal = {Bulletin de la Société Mathématique de France},
language = {fre},
pages = {265-283},
publisher = {Société mathématique de France},
title = {Noyau de diffusion sur les espaces homogènes compacts},
url = {http://eudml.org/doc/87210},
volume = {101},
year = {1973},
}

TY - JOUR
AU - Benabdallah, Abdel-Ilah
TI - Noyau de diffusion sur les espaces homogènes compacts
JO - Bulletin de la Société Mathématique de France
PY - 1973
PB - Société mathématique de France
VL - 101
SP - 265
EP - 283
LA - fre
UR - http://eudml.org/doc/87210
ER -

References

top
  1. [1] ADAMS (J. F.). — Lectures on Lie groups. — New York, W. A. Benjamin, 1969 (Mathematics Lecture Note Series). Zbl0206.31604MR40 #5780
  2. [2] ATIYAH (M.), BOTT (R.) and PATODI (V. K.). — On the heat equation and the index theorem, Inventiones Math., t. 19, 1973, p. 273-330. Zbl0257.58008MR58 #31287
  3. [3] BERGER (M.). — Le spectre des variétés riemanniennes, Revue roumaine Math. pures et appl., t. 13, 1968, p. 915-931. Zbl0181.49603MR39 #892
  4. [4] BERGER (M.), GAUDUCHON (P.) et MAZET (E.). — Le spectre d'une variété riemannienne. — Berlin, Springer-Verlag, 1971 (Lecture Notes in mathematics, 194). Zbl0223.53034MR43 #8025
  5. [5] COMBET (E.). — Paramétrix et invariants sur les variétés compactes, Ann. scient. Éc. Norm. Sup., 4e série, t. 3, 1970, p. 247-271. Zbl0203.09601MR44 #7589
  6. [6] D'ATRI (J. E.) and NICKERSON (H. K.). — The existence of special orthonormal frames, J. of diff. Geom., t. 2, 1968, p. 393-409. Zbl0179.50601MR40 #1933
  7. [7] ÈSKIN (L. D.). — The heat equation and the Weierstrass transformation on certain symmetric spaces, Amer. math. Soc. Transl., t. 75, 1968, p. 239-254. Zbl0187.03501
  8. [8] ÈSKIN (L. D.). — The heat equation on Lie groups, In memoriam N. G. Cebotarev [in Russian], Izdat. Kazan Univ., 1964, p. 113-132. MR34 #6353
  9. [9] KOBAYASHI (S.) and NOMIZU (K.). — Foundations of differential Geometry, Vol. 2. — New York, Interscience Publishers, 1969 (Interscience Tracts in pure and applied Mathematics, 15). Zbl0119.37502MR38 #6501
  10. [10] KOTAKE (T.). — The fixed point theorem of Atiyah-Bott via parabolic operators, Comm. pure and appl. Math., t. 22, 1969, p. 789-806. Zbl0181.36802MR54 #14008
  11. [11] KOTAKE (T.). — An analytic proof of the classical Riemann-Roch theorem, Global analysis, III, p. 137-146. — Providence American mathematical Society (Proceedings of Symposia in pure Mathematics, 16). Zbl0208.13101MR41 #9294
  12. [12] MC KEANS (H. P.) and SINGER (I. M.). — Curvature and the eigenvalues of the Laplacian, J. of differ Geom., t. 1, 1967, p. 43-69. Zbl0198.44301MR36 #828
  13. [13] PATODI (V. K.). — An analytic proof of Riemann-Roch-Hirzebruch theorem of Kaehler manifolds, J. of differ Geom., t. 5, 1971, p. 251-281. Zbl0219.53054MR44 #7502
  14. [14] PATODI (V. K.). — Curvature and the eigenforms of the Laplace operator, J. of differ Geom., t. 5, 1971, p. 223-249. Zbl0211.53901MR45 #1201
  15. [15] VILENKIN (N. J.). — Special functions and the theory of group representations. — Providence, american mathematical Society, 1968 (Translations of mathematical Monographs, 22). Zbl0172.18404MR37 #5429

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.