BGG resolutions via configuration spaces
Michael Falk[1]; Vadim Schechtman[2]; Alexander Varchenko[3]
- [1] Department of Mathematics and Statistics, Northern Arizona University Flagstaff, AZ 86011, USA
- [2] Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 Route de Narbonne, 31062 Toulouse, France
- [3] Department of Mathematics, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3250, USA
Journal de l’École polytechnique — Mathématiques (2014)
- Volume: 1, page 225-245
- ISSN: 2270-518X
Access Full Article
topAbstract
topHow to cite
topFalk, Michael, Schechtman, Vadim, and Varchenko, Alexander. "BGG resolutions via configuration spaces." Journal de l’École polytechnique — Mathématiques 1 (2014): 225-245. <http://eudml.org/doc/275461>.
@article{Falk2014,
abstract = {We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the $\mathfrak\{sl\}_2$ Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.},
affiliation = {Department of Mathematics and Statistics, Northern Arizona University Flagstaff, AZ 86011, USA; Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 Route de Narbonne, 31062 Toulouse, France; Department of Mathematics, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3250, USA},
author = {Falk, Michael, Schechtman, Vadim, Varchenko, Alexander},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Configuration space; normal-crossing divisor; resolution; residue; local system; cohomology; Orlik-Solomon algebra; Aomoto complex; BGG resolution; configuration space},
language = {eng},
pages = {225-245},
publisher = {École polytechnique},
title = {BGG resolutions via configuration spaces},
url = {http://eudml.org/doc/275461},
volume = {1},
year = {2014},
}
TY - JOUR
AU - Falk, Michael
AU - Schechtman, Vadim
AU - Varchenko, Alexander
TI - BGG resolutions via configuration spaces
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 225
EP - 245
AB - We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the $\mathfrak{sl}_2$ Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.
LA - eng
KW - Configuration space; normal-crossing divisor; resolution; residue; local system; cohomology; Orlik-Solomon algebra; Aomoto complex; BGG resolution; configuration space
UR - http://eudml.org/doc/275461
ER -
References
top- D. Arinkin, A. Varchenko, Intersection cohomology of a rank one local system on the complement of a hyperplane-like divisor, Configuration spaces. Geometry, combinatorics and topology 14 (2012), 49-53, BjornerA.A., Pisa Zbl1274.14025MR3203591
- A. Beilinson, J. Bernstein, Localisation de -modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15-18 Zbl0476.14019MR610137
- R. Bezrukavnikov, M. Finkelberg, V. Schechtman, Factorizable sheaves and quantum groups, 1691 (1998), Springer-Verlag, Berlin Zbl0938.17016MR1641131
- A. Beilinson, V. Ginzburg, Infinitesimal structure of moduli spaces of -bundles, Internat. Math. Res. Notices (1992), 63-74 Zbl0763.32011MR1159447
- I. N. Bernstein, I. M. Gelfand, S. I. Gelfand, Differential operators on the base affine space and a study of -modules, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) (1975), 21-64, Halsted, New York Zbl0338.58019MR578996
- C. De Concini, C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), 459-494 Zbl0842.14038MR1366622
- A. Dimca, Singularities and topology of hypersurfaces, (1992), Springer-Verlag, New York Zbl0753.57001MR1194180
- H. Esnault, V. Schechtman, E. Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992), 557-561 Zbl0788.32005MR1176205
- G. Kempf, The Grothendieck-Cousin complex of an induced representation, Adv. in Math. 29 (1978), 310-396 Zbl0393.20027MR509802
- S. Khoroshkin, V. Schechtman, Factorizable -modules, Math. Res. Lett. 4 (1997), 239-257 Zbl0886.17012MR1453057
- S. Khoroshkin, A. Varchenko, Quiver -modules and homology of local systems over an arrangement of hyperplanes, IMRP Int. Math. Res. Pap. (2006) Zbl1116.32005MR2282180
- P. Orlik, H. Terao, Arrangements of hyperplanes, 300 (1992), Springer-Verlag, Berlin Zbl0757.55001MR1217488
- V. Schechtman, H. Terao, A. Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995), 93-102 Zbl0849.32025MR1344845
- V. Schechtman, A. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent. Math. 106 (1991), 139-194 Zbl0754.17024MR1123378
- A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, 21 (1995), World Scientific Publishing Co., Inc., River Edge, NJ Zbl0951.33001MR1384760
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.