BGG resolutions via configuration spaces

Michael Falk[1]; Vadim Schechtman[2]; Alexander Varchenko[3]

  • [1] Department of Mathematics and Statistics, Northern Arizona University Flagstaff, AZ 86011, USA
  • [2] Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 Route de Narbonne, 31062 Toulouse, France
  • [3] Department of Mathematics, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3250, USA

Journal de l’École polytechnique — Mathématiques (2014)

  • Volume: 1, page 225-245
  • ISSN: 2270-518X

Abstract

top
We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the 𝔰𝔩 2 Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.

How to cite

top

Falk, Michael, Schechtman, Vadim, and Varchenko, Alexander. "BGG resolutions via configuration spaces." Journal de l’École polytechnique — Mathématiques 1 (2014): 225-245. <http://eudml.org/doc/275461>.

@article{Falk2014,
abstract = {We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the $\mathfrak\{sl\}_2$ Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.},
affiliation = {Department of Mathematics and Statistics, Northern Arizona University Flagstaff, AZ 86011, USA; Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 Route de Narbonne, 31062 Toulouse, France; Department of Mathematics, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3250, USA},
author = {Falk, Michael, Schechtman, Vadim, Varchenko, Alexander},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Configuration space; normal-crossing divisor; resolution; residue; local system; cohomology; Orlik-Solomon algebra; Aomoto complex; BGG resolution; configuration space},
language = {eng},
pages = {225-245},
publisher = {École polytechnique},
title = {BGG resolutions via configuration spaces},
url = {http://eudml.org/doc/275461},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Falk, Michael
AU - Schechtman, Vadim
AU - Varchenko, Alexander
TI - BGG resolutions via configuration spaces
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 225
EP - 245
AB - We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the $\mathfrak{sl}_2$ Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.
LA - eng
KW - Configuration space; normal-crossing divisor; resolution; residue; local system; cohomology; Orlik-Solomon algebra; Aomoto complex; BGG resolution; configuration space
UR - http://eudml.org/doc/275461
ER -

References

top
  1. D. Arinkin, A. Varchenko, Intersection cohomology of a rank one local system on the complement of a hyperplane-like divisor, Configuration spaces. Geometry, combinatorics and topology 14 (2012), 49-53, BjornerA.A., Pisa Zbl1274.14025MR3203591
  2. A. Beilinson, J. Bernstein, Localisation de 𝔤 -modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15-18 Zbl0476.14019MR610137
  3. R. Bezrukavnikov, M. Finkelberg, V. Schechtman, Factorizable sheaves and quantum groups, 1691 (1998), Springer-Verlag, Berlin Zbl0938.17016MR1641131
  4. A. Beilinson, V. Ginzburg, Infinitesimal structure of moduli spaces of G -bundles, Internat. Math. Res. Notices (1992), 63-74 Zbl0763.32011MR1159447
  5. I. N. Bernstein, I. M. Gelfand, S. I. Gelfand, Differential operators on the base affine space and a study of 𝔤 -modules, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) (1975), 21-64, Halsted, New York Zbl0338.58019MR578996
  6. C. De Concini, C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), 459-494 Zbl0842.14038MR1366622
  7. A. Dimca, Singularities and topology of hypersurfaces, (1992), Springer-Verlag, New York Zbl0753.57001MR1194180
  8. H. Esnault, V. Schechtman, E. Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992), 557-561 Zbl0788.32005MR1176205
  9. G. Kempf, The Grothendieck-Cousin complex of an induced representation, Adv. in Math. 29 (1978), 310-396 Zbl0393.20027MR509802
  10. S. Khoroshkin, V. Schechtman, Factorizable 𝒟 -modules, Math. Res. Lett. 4 (1997), 239-257 Zbl0886.17012MR1453057
  11. S. Khoroshkin, A. Varchenko, Quiver 𝒟 -modules and homology of local systems over an arrangement of hyperplanes, IMRP Int. Math. Res. Pap. (2006) Zbl1116.32005MR2282180
  12. P. Orlik, H. Terao, Arrangements of hyperplanes, 300 (1992), Springer-Verlag, Berlin Zbl0757.55001MR1217488
  13. V. Schechtman, H. Terao, A. Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995), 93-102 Zbl0849.32025MR1344845
  14. V. Schechtman, A. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent. Math. 106 (1991), 139-194 Zbl0754.17024MR1123378
  15. A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, 21 (1995), World Scientific Publishing Co., Inc., River Edge, NJ Zbl0951.33001MR1384760

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.