Spherical roots of spherical varieties

Friedrich Knop[1]

  • [1] Department Mathematik, Emmy-Noether-Zentrum, FAU Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 6, page 2503-2526
  • ISSN: 0373-0956

Abstract

top
Brion proved that the valuation cone of a complex spherical variety is a fundamental domain for a finite reflection group, called the little Weyl group. The principal goal of this paper is to generalize this theorem to fields of characteristic unequal to 2. We also prove a weaker version which holds in characteristic 2, as well. Our main tool is a generalization of Akhiezer’s classification of spherical varieties of rank 1.

How to cite

top

Knop, Friedrich. "Spherical roots of spherical varieties." Annales de l’institut Fourier 64.6 (2014): 2503-2526. <http://eudml.org/doc/275467>.

@article{Knop2014,
abstract = {Brion proved that the valuation cone of a complex spherical variety is a fundamental domain for a finite reflection group, called the little Weyl group. The principal goal of this paper is to generalize this theorem to fields of characteristic unequal to 2. We also prove a weaker version which holds in characteristic 2, as well. Our main tool is a generalization of Akhiezer’s classification of spherical varieties of rank 1.},
affiliation = {Department Mathematik, Emmy-Noether-Zentrum, FAU Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany},
author = {Knop, Friedrich},
journal = {Annales de l’institut Fourier},
keywords = {Spherical varieties; spherical roots; homogeneous varieties; fields of positive characteristic; spherical varieties},
language = {eng},
number = {6},
pages = {2503-2526},
publisher = {Association des Annales de l’institut Fourier},
title = {Spherical roots of spherical varieties},
url = {http://eudml.org/doc/275467},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Knop, Friedrich
TI - Spherical roots of spherical varieties
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2503
EP - 2526
AB - Brion proved that the valuation cone of a complex spherical variety is a fundamental domain for a finite reflection group, called the little Weyl group. The principal goal of this paper is to generalize this theorem to fields of characteristic unequal to 2. We also prove a weaker version which holds in characteristic 2, as well. Our main tool is a generalization of Akhiezer’s classification of spherical varieties of rank 1.
LA - eng
KW - Spherical varieties; spherical roots; homogeneous varieties; fields of positive characteristic; spherical varieties
UR - http://eudml.org/doc/275467
ER -

References

top
  1. D. N. Akhiezer, Equivariant completion of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), 49-78 Zbl0537.14033MR739893
  2. A. Borel, J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95-104 Zbl0238.20055MR294349
  3. Armand Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR204532
  4. N. Bourbaki, Éléments de athématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, (1968), Hermann, Paris Zbl0186.33001MR240238
  5. P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F 4 , J. Algebra 329 (2011), 4-51 Zbl1231.14040MR2769314
  6. M. Brion, On spherical varieties of rank one (after D. Ahiezer, A. Huckleberry, D. Snow), Group actions and invariant theory, (Montreal, PQ, 1988) 10 (1989), 31-41, Amer. Math. Soc., Providence, RI Zbl0702.20029MR1021273
  7. M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), 115-143 Zbl0729.14038MR1068418
  8. E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S 30(72) (1952), 349-462 Zbl0048.01701MR47629
  9. V. Franjou, W. van der Kallen, Power reductivity over an arbitrary base, Doc. Math. (2010), 171-195 Zbl1213.20044MR2804253
  10. F. Knop, Mehrfach transitive Operationen algebraischer Gruppen, Arch. Math. (Basel) 41 (1983), 438-446 Zbl0557.14028MR731620
  11. F. Knop, The Luna-Vust theory of spherical embeddings, (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
  12. F. Knop, Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann. 295 (1993), 333-363 Zbl0789.14040MR1202396
  13. F. Knop, Localization of spherical varieties, (2013) Zbl1331.14051MR3218807
  14. F. Knop, G. Röhrle, Spherical subgroups in simple algebraic groups, (2013) Zbl06486863
  15. M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compos. Math. 38 (1979), 129-153 Zbl0402.22006MR528837
  16. D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161-226 Zbl1085.14039
  17. Th. Luna, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), 186-245 Zbl0545.14010MR705534
  18. B. Schalke, Sphärische Einbettungen in positiver Charakteristik, Diplomarbeit (Universität Erlangen) (2011) 
  19. B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), 375-403 Zbl0921.14031MR1424449

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.