Spherical roots of spherical varieties
- [1] Department Mathematik, Emmy-Noether-Zentrum, FAU Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 6, page 2503-2526
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKnop, Friedrich. "Spherical roots of spherical varieties." Annales de l’institut Fourier 64.6 (2014): 2503-2526. <http://eudml.org/doc/275467>.
@article{Knop2014,
abstract = {Brion proved that the valuation cone of a complex spherical variety is a fundamental domain for a finite reflection group, called the little Weyl group. The principal goal of this paper is to generalize this theorem to fields of characteristic unequal to 2. We also prove a weaker version which holds in characteristic 2, as well. Our main tool is a generalization of Akhiezer’s classification of spherical varieties of rank 1.},
affiliation = {Department Mathematik, Emmy-Noether-Zentrum, FAU Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany},
author = {Knop, Friedrich},
journal = {Annales de l’institut Fourier},
keywords = {Spherical varieties; spherical roots; homogeneous varieties; fields of positive characteristic; spherical varieties},
language = {eng},
number = {6},
pages = {2503-2526},
publisher = {Association des Annales de l’institut Fourier},
title = {Spherical roots of spherical varieties},
url = {http://eudml.org/doc/275467},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Knop, Friedrich
TI - Spherical roots of spherical varieties
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2503
EP - 2526
AB - Brion proved that the valuation cone of a complex spherical variety is a fundamental domain for a finite reflection group, called the little Weyl group. The principal goal of this paper is to generalize this theorem to fields of characteristic unequal to 2. We also prove a weaker version which holds in characteristic 2, as well. Our main tool is a generalization of Akhiezer’s classification of spherical varieties of rank 1.
LA - eng
KW - Spherical varieties; spherical roots; homogeneous varieties; fields of positive characteristic; spherical varieties
UR - http://eudml.org/doc/275467
ER -
References
top- D. N. Akhiezer, Equivariant completion of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), 49-78 Zbl0537.14033MR739893
- A. Borel, J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95-104 Zbl0238.20055MR294349
- Armand Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR204532
- N. Bourbaki, Éléments de athématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, (1968), Hermann, Paris Zbl0186.33001MR240238
- P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type , J. Algebra 329 (2011), 4-51 Zbl1231.14040MR2769314
- M. Brion, On spherical varieties of rank one (after D. Ahiezer, A. Huckleberry, D. Snow), Group actions and invariant theory, (Montreal, PQ, 1988) 10 (1989), 31-41, Amer. Math. Soc., Providence, RI Zbl0702.20029MR1021273
- M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), 115-143 Zbl0729.14038MR1068418
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S 30(72) (1952), 349-462 Zbl0048.01701MR47629
- V. Franjou, W. van der Kallen, Power reductivity over an arbitrary base, Doc. Math. (2010), 171-195 Zbl1213.20044MR2804253
- F. Knop, Mehrfach transitive Operationen algebraischer Gruppen, Arch. Math. (Basel) 41 (1983), 438-446 Zbl0557.14028MR731620
- F. Knop, The Luna-Vust theory of spherical embeddings, (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
- F. Knop, Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann. 295 (1993), 333-363 Zbl0789.14040MR1202396
- F. Knop, Localization of spherical varieties, (2013) Zbl1331.14051MR3218807
- F. Knop, G. Röhrle, Spherical subgroups in simple algebraic groups, (2013) Zbl06486863
- M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compos. Math. 38 (1979), 129-153 Zbl0402.22006MR528837
- D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161-226 Zbl1085.14039
- Th. Luna, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), 186-245 Zbl0545.14010MR705534
- B. Schalke, Sphärische Einbettungen in positiver Charakteristik, Diplomarbeit (Universität Erlangen) (2011)
- B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), 375-403 Zbl0921.14031MR1424449
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.