Variétés sphériques de type A

Domingo Luna

Publications Mathématiques de l'IHÉS (2001)

  • Volume: 94, page 161-226
  • ISSN: 0073-8301

How to cite

top

Luna, Domingo. "Variétés sphériques de type A." Publications Mathématiques de l'IHÉS 94 (2001): 161-226. <http://eudml.org/doc/104178>.

@article{Luna2001,
author = {Luna, Domingo},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {spherical variety; spherical subgroup; reductive groups; wonderful variety},
language = {fre},
pages = {161-226},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {Variétés sphériques de type A},
url = {http://eudml.org/doc/104178},
volume = {94},
year = {2001},
}

TY - JOUR
AU - Luna, Domingo
TI - Variétés sphériques de type A
JO - Publications Mathématiques de l'IHÉS
PY - 2001
PB - Institut des Hautes Etudes Scientifiques
VL - 94
SP - 161
EP - 226
LA - fre
KW - spherical variety; spherical subgroup; reductive groups; wonderful variety
UR - http://eudml.org/doc/104178
ER -

References

top
  1. [Ak] D. N. AKHIEZER, Equivariant completion of homogeneous algebraic varieties by homogeneous divisors,Ann. Global Anal. Geom., 1 (1983), 49-78. Zbl0537.14033MR739893
  2. [Br1] M. BRION, On spherical varieties of rank one, CMS Conf. Proc., 10 (1989), 31-41. Zbl0702.20029MR1021273
  3. [Br2] M. BRION, Classification des espaces homogènes sphériques, Compositio Math., 63 (1987), 189-208. Zbl0642.14011MR906369
  4. [B3] M. BRION, Sur l’image de l’application moment, Lect. Notes in Math., Springer, 1296 (1987), 177-192. Zbl0667.58012
  5. [Br4] M. BRION, Sur la géométrie des variétés sphériques, Comment. Math. Helv., 66 (1991), 237-262. Zbl0741.14027MR1107840
  6. [Br5] M. BRION, Spherical varieties, Proc. ICM 1994, vol. 2, Birkhäuser (1995), 753-760. Zbl0862.14031MR1403975
  7. [Br6] M. BRION, Variétés sphériques, www.fourier.ujf-grenoble.fr/mbrion/notes.html Zbl0216.18103
  8. [Br7] M. BRION, On orbit closures of Borel subgroups in spherical varieties, http://www-fourier.ujf-grenoble.fr/mbrion/preprints.html 
  9. [DeC-P] C. DE CONCINI, C. PROCESI, Complete Symmetric Varieties, Lect. Notes in Math., Springer, 996 (1983), 1-44. Zbl0581.14041MR718125
  10. [De] M. DEMAZURE, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. de l’École Norm. Sup., 4e série, t. 3 (1970), 507-588. Zbl0223.14009
  11. [Fo] A. FOSCHI, Variétés magnifiques et polytopes moment, thèse de doctorat de l’Univ. de Grenoble I, 1998. 
  12. [Fu] W. FULTON, Introduction to Toric Varieties, Ann. of Math. Studies, 131, Princeton Univ. Press, 1993. Zbl0813.14039MR1234037
  13. [G-S] V. GUILLEMIN, S. STERNBERG, Multiplicity-free spaces, J. Diff. Geom., 19 (1984), 31-56. Zbl0548.58017MR739781
  14. [Ho] R. HOWE, Perspectives on invariant theory : Schur duality, multiplicity-free actions and beyond, Israel Math. Conf. Proc., vol. 8, 1995. Zbl0844.20027MR1321638
  15. [H-W] A. HUCKLEBERRY, T. WURZBACHER, Multiplicity-free complex manifolds, Math. Ann., 286 (1990), 261-280. Zbl0765.32016MR1032934
  16. [Iv] B. IVERSEN, The geometry of algebraic groups, Advances in Math., 20 (1976), 57-85. Zbl0327.14015MR399114
  17. [Kn1] F. KNOP, The Luna-Vust theory of spherical embeddings, Proc. of the Hyderabad conference on algebraic groups (1989), Manj-Prakashan (1991), 225-249. Zbl0812.20023MR1131314
  18. [Kn2] F. KNOP, Automorphisms, root systems and the compactification of homogeneous varieties, J. Amer. Math. Soc. 1, vol. 9 (1996), 153-174. Zbl0862.14034MR1311823
  19. [Kn3] F. KNOP, Weyl groups of hamiltonian manifolds I, www.math.rutgers.edu/knop/abstracts/abstracts.html 
  20. [Kn4] F. KNOP, Towards a classification of multiplicity free manifolds, texte d’un exposé au colloque S.M.F. « Opérations hamiltoniennes et opérations de groupes algébriques », Grenoble, 1997, à paraître. 
  21. [Kn5] F. KNOP, On the set of orbits for a Borel subgroup, Comment. Math. Helv., 70 (1995), 285-309. Zbl0828.22016MR1324631
  22. [Lu1] D. LUNA, Toute variété magnifique est sphérique, Trans. Groups, vol. 1, n 3 (1996), 249-258. Zbl0912.14017MR1417712
  23. [Lu2] D. LUNA, Grosses cellules pour les variétés sphériques, in Algebraic Groups and Lie Groups, ed. by G. I. Lehrer, Australian Math. Soc. Lecture, Series 9 (1997), 267-280. Zbl0902.14037MR1635686
  24. [LV] D. LUNA, Th. VUST, Plongements d’espaces homogènes, Comment. Math. Helvetici, 58 (1983), 186-245. Zbl0545.14010
  25. [Mi] I. MIKITYUK, On the integrability of invariant hamiltonian systems with homogeneous configuration spaces, Math. USSR, Sb 57 (1987), 527-546. Zbl0652.70012MR842398
  26. [Vu1] Th. VUST, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, 26 (1976), 1-31. Zbl0314.20035MR404280
  27. [Vu2] Th. VUST, Plongements d’espaces symétriques algébriques : une classification, Ann. Sc. Norm. Sup. Pisa, Série IV, vol. XVII, fasc. 2 (1990), 165-194. Zbl0728.14041
  28. [Wa] B. WASSERMAN, Wonderful varieties of rank two, Trans. Groups, vol. 1, n° 4 (1996), 375-403. Zbl0921.14031MR1424449
  29. [Wo] C. WOODWARD, Spherical varieties and existence of invariant Kähler structures, Duke Math. J., vol. 93,n° 2 (1998), 345-377. Zbl0979.53085MR1625995

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.