Variétés sphériques de type A
Publications Mathématiques de l'IHÉS (2001)
- Volume: 94, page 161-226
- ISSN: 0073-8301
Access Full Article
topHow to cite
topLuna, Domingo. "Variétés sphériques de type A." Publications Mathématiques de l'IHÉS 94 (2001): 161-226. <http://eudml.org/doc/104178>.
@article{Luna2001,
author = {Luna, Domingo},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {spherical variety; spherical subgroup; reductive groups; wonderful variety},
language = {fre},
pages = {161-226},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {Variétés sphériques de type A},
url = {http://eudml.org/doc/104178},
volume = {94},
year = {2001},
}
TY - JOUR
AU - Luna, Domingo
TI - Variétés sphériques de type A
JO - Publications Mathématiques de l'IHÉS
PY - 2001
PB - Institut des Hautes Etudes Scientifiques
VL - 94
SP - 161
EP - 226
LA - fre
KW - spherical variety; spherical subgroup; reductive groups; wonderful variety
UR - http://eudml.org/doc/104178
ER -
References
top- [Ak] D. N. AKHIEZER, Equivariant completion of homogeneous algebraic varieties by homogeneous divisors,Ann. Global Anal. Geom., 1 (1983), 49-78. Zbl0537.14033MR739893
- [Br1] M. BRION, On spherical varieties of rank one, CMS Conf. Proc., 10 (1989), 31-41. Zbl0702.20029MR1021273
- [Br2] M. BRION, Classification des espaces homogènes sphériques, Compositio Math., 63 (1987), 189-208. Zbl0642.14011MR906369
- [B3] M. BRION, Sur l’image de l’application moment, Lect. Notes in Math., Springer, 1296 (1987), 177-192. Zbl0667.58012
- [Br4] M. BRION, Sur la géométrie des variétés sphériques, Comment. Math. Helv., 66 (1991), 237-262. Zbl0741.14027MR1107840
- [Br5] M. BRION, Spherical varieties, Proc. ICM 1994, vol. 2, Birkhäuser (1995), 753-760. Zbl0862.14031MR1403975
- [Br6] M. BRION, Variétés sphériques, www.fourier.ujf-grenoble.fr/mbrion/notes.html Zbl0216.18103
- [Br7] M. BRION, On orbit closures of Borel subgroups in spherical varieties, http://www-fourier.ujf-grenoble.fr/mbrion/preprints.html
- [DeC-P] C. DE CONCINI, C. PROCESI, Complete Symmetric Varieties, Lect. Notes in Math., Springer, 996 (1983), 1-44. Zbl0581.14041MR718125
- [De] M. DEMAZURE, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. de l’École Norm. Sup., 4e série, t. 3 (1970), 507-588. Zbl0223.14009
- [Fo] A. FOSCHI, Variétés magnifiques et polytopes moment, thèse de doctorat de l’Univ. de Grenoble I, 1998.
- [Fu] W. FULTON, Introduction to Toric Varieties, Ann. of Math. Studies, 131, Princeton Univ. Press, 1993. Zbl0813.14039MR1234037
- [G-S] V. GUILLEMIN, S. STERNBERG, Multiplicity-free spaces, J. Diff. Geom., 19 (1984), 31-56. Zbl0548.58017MR739781
- [Ho] R. HOWE, Perspectives on invariant theory : Schur duality, multiplicity-free actions and beyond, Israel Math. Conf. Proc., vol. 8, 1995. Zbl0844.20027MR1321638
- [H-W] A. HUCKLEBERRY, T. WURZBACHER, Multiplicity-free complex manifolds, Math. Ann., 286 (1990), 261-280. Zbl0765.32016MR1032934
- [Iv] B. IVERSEN, The geometry of algebraic groups, Advances in Math., 20 (1976), 57-85. Zbl0327.14015MR399114
- [Kn1] F. KNOP, The Luna-Vust theory of spherical embeddings, Proc. of the Hyderabad conference on algebraic groups (1989), Manj-Prakashan (1991), 225-249. Zbl0812.20023MR1131314
- [Kn2] F. KNOP, Automorphisms, root systems and the compactification of homogeneous varieties, J. Amer. Math. Soc. 1, vol. 9 (1996), 153-174. Zbl0862.14034MR1311823
- [Kn3] F. KNOP, Weyl groups of hamiltonian manifolds I, www.math.rutgers.edu/knop/abstracts/abstracts.html
- [Kn4] F. KNOP, Towards a classification of multiplicity free manifolds, texte d’un exposé au colloque S.M.F. « Opérations hamiltoniennes et opérations de groupes algébriques », Grenoble, 1997, à paraître.
- [Kn5] F. KNOP, On the set of orbits for a Borel subgroup, Comment. Math. Helv., 70 (1995), 285-309. Zbl0828.22016MR1324631
- [Lu1] D. LUNA, Toute variété magnifique est sphérique, Trans. Groups, vol. 1, n 3 (1996), 249-258. Zbl0912.14017MR1417712
- [Lu2] D. LUNA, Grosses cellules pour les variétés sphériques, in Algebraic Groups and Lie Groups, ed. by G. I. Lehrer, Australian Math. Soc. Lecture, Series 9 (1997), 267-280. Zbl0902.14037MR1635686
- [LV] D. LUNA, Th. VUST, Plongements d’espaces homogènes, Comment. Math. Helvetici, 58 (1983), 186-245. Zbl0545.14010
- [Mi] I. MIKITYUK, On the integrability of invariant hamiltonian systems with homogeneous configuration spaces, Math. USSR, Sb 57 (1987), 527-546. Zbl0652.70012MR842398
- [Vu1] Th. VUST, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, 26 (1976), 1-31. Zbl0314.20035MR404280
- [Vu2] Th. VUST, Plongements d’espaces symétriques algébriques : une classification, Ann. Sc. Norm. Sup. Pisa, Série IV, vol. XVII, fasc. 2 (1990), 165-194. Zbl0728.14041
- [Wa] B. WASSERMAN, Wonderful varieties of rank two, Trans. Groups, vol. 1, n° 4 (1996), 375-403. Zbl0921.14031MR1424449
- [Wo] C. WOODWARD, Spherical varieties and existence of invariant Kähler structures, Duke Math. J., vol. 93,n° 2 (1998), 345-377. Zbl0979.53085MR1625995
Citations in EuDML Documents
top- Guido Pezzini, Lectures on spherical and wonderful varieties
- Friedrich Knop, Spherical roots of spherical varieties
- Ivan V. Losev, Proof of the Knop conjecture
- Paolo Bravi, Stéphanie Cupit-Foutou, Classification of strict wonderful varieties
- Paolo Bravi, Classification of spherical varieties
- Ivan Losev, Uniqueness properties for spherical varieties
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.