Sharp trace asymptotics for a class of 2 D -magnetic operators

Horia D. Cornean[1]; Søren Fournais[2]; Rupert L. Frank[3]; Bernard Helffer[4]

  • [1] Aalborg University Department of Mathematical Sciences Fredrik Bajers Vej 7G 9220 Aalborg (Denmark)
  • [2] Aarhus University Department of Mathematics Ny Munkegade 181, Building 1530 8000 Aarhus C (Denmark)
  • [3] Princeton University Fine Hall Department of Mathematics Princeton, NJ 08544 (USA)
  • [4] Université Paris Sud et CNRS Laboratoire de Mathématiques Bâtiment 425 91405 Orsay Cedex (France)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 6, page 2457-2513
  • ISSN: 0373-0956

Abstract

top
In this paper we prove a two-term asymptotic formula for the spectral counting function for a 2 D magnetic Schrödinger operator on a domain (with Dirichlet boundary conditions) in a semiclassical limit and with strong magnetic field. By scaling, this is equivalent to a thermodynamic limit of a 2 D Fermi gas submitted to a constant external magnetic field.The original motivation comes from a paper by H. Kunz in which he studied, among other things, the boundary correction for the grand-canonical pressure and density of such a Fermi gas. Our main theorem yields a rigorous proof of the formulas announced by Kunz. Moreover, the same theorem provides several other results on the integrated density of states for operators of the type ( - i h - μ A ) 2 in L 2 ( Ω ) with Dirichlet boundary conditions.

How to cite

top

Cornean, Horia D., et al. "Sharp trace asymptotics for a class of $2D$-magnetic operators." Annales de l’institut Fourier 63.6 (2013): 2457-2513. <http://eudml.org/doc/275472>.

@article{Cornean2013,
abstract = {In this paper we prove a two-term asymptotic formula for the spectral counting function for a $2$D magnetic Schrödinger operator on a domain (with Dirichlet boundary conditions) in a semiclassical limit and with strong magnetic field. By scaling, this is equivalent to a thermodynamic limit of a $2$D Fermi gas submitted to a constant external magnetic field.The original motivation comes from a paper by H. Kunz in which he studied, among other things, the boundary correction for the grand-canonical pressure and density of such a Fermi gas. Our main theorem yields a rigorous proof of the formulas announced by Kunz. Moreover, the same theorem provides several other results on the integrated density of states for operators of the type $(-ih\nabla - \mu \{\bf A\})^2$ in $L^2(\{\Omega \})$ with Dirichlet boundary conditions.},
affiliation = {Aalborg University Department of Mathematical Sciences Fredrik Bajers Vej 7G 9220 Aalborg (Denmark); Aarhus University Department of Mathematics Ny Munkegade 181, Building 1530 8000 Aarhus C (Denmark); Princeton University Fine Hall Department of Mathematics Princeton, NJ 08544 (USA); Université Paris Sud et CNRS Laboratoire de Mathématiques Bâtiment 425 91405 Orsay Cedex (France)},
author = {Cornean, Horia D., Fournais, Søren, Frank, Rupert L., Helffer, Bernard},
journal = {Annales de l’institut Fourier},
keywords = {Semiclassical asymptotics; Weyl law; magnetic Schrödinger operators; semiclassical asymptotics},
language = {eng},
number = {6},
pages = {2457-2513},
publisher = {Association des Annales de l’institut Fourier},
title = {Sharp trace asymptotics for a class of $2D$-magnetic operators},
url = {http://eudml.org/doc/275472},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Cornean, Horia D.
AU - Fournais, Søren
AU - Frank, Rupert L.
AU - Helffer, Bernard
TI - Sharp trace asymptotics for a class of $2D$-magnetic operators
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2457
EP - 2513
AB - In this paper we prove a two-term asymptotic formula for the spectral counting function for a $2$D magnetic Schrödinger operator on a domain (with Dirichlet boundary conditions) in a semiclassical limit and with strong magnetic field. By scaling, this is equivalent to a thermodynamic limit of a $2$D Fermi gas submitted to a constant external magnetic field.The original motivation comes from a paper by H. Kunz in which he studied, among other things, the boundary correction for the grand-canonical pressure and density of such a Fermi gas. Our main theorem yields a rigorous proof of the formulas announced by Kunz. Moreover, the same theorem provides several other results on the integrated density of states for operators of the type $(-ih\nabla - \mu {\bf A})^2$ in $L^2({\Omega })$ with Dirichlet boundary conditions.
LA - eng
KW - Semiclassical asymptotics; Weyl law; magnetic Schrödinger operators; semiclassical asymptotics
UR - http://eudml.org/doc/275472
ER -

References

top
  1. Philippe Briet, Peter D. Hislop, Georgi Raikov, Eric Soccorsi, Mourre estimates for a 2D magnetic quantum Hamiltonian on strip-like domains, Spectral and scattering theory for quantum magnetic systems 500 (2009), 33-46, Amer. Math. Soc., Providence, RI Zbl1183.81063MR2655141
  2. Philippe Briet, Georgi Raikov, Eric Soccorsi, Spectral properties of a magnetic quantum Hamiltonian on a strip, Asymptot. Anal. 58 (2008), 127-155 Zbl1163.35446MR2456460
  3. Kurt Broderix, Dirk Hundertmark, Hajo Leschke, Continuity properties of Schrödinger semigroups with magnetic fields, Rev. Math. Phys. 12 (2000), 181-225 Zbl0961.81006MR1756112
  4. J. M. Combes, L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251-270 Zbl0271.35062MR391792
  5. H. D. Cornean, On spectral properties of Dirac or Schrödinger operators with magnetic field, (1999) 
  6. H. D. Cornean, Gheorghe Nenciu, The Faraday effect revisited: thermodynamic limit, J. Funct. Anal. 257 (2009), 2024-2066 Zbl1178.82077MR2548029
  7. Stephan De Bièvre, Joseph V. Pulé, Propagating edge states for a magnetic Hamiltonian, Math. Phys. Electron. J. 5 (1999) Zbl0930.35144MR1703586
  8. Mouez Dimassi, Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press, Cambridge Zbl0926.35002MR1735654
  9. László Erdős, Jan Philip Solovej, Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Comm. Math. Phys. 188 (1997), 599-656 Zbl0909.47052MR1473314
  10. Søren Fournais, Bernard Helffer, Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble) 56 (2006), 1-67 Zbl1097.47020MR2228679
  11. Søren Fournais, Bernard Helffer, Spectral methods in surface superconductivity, (2010), Birkhäuser Boston Inc., Boston, MA Zbl1256.35001MR2662319
  12. Søren Fournais, Ayman Kachmar, On the energy of bound states for magnetic Schrödinger operators, J. Lond. Math. Soc. (2) 80 (2009), 233-255 Zbl1179.35203MR2520387
  13. Rupert L. Frank, On the asymptotic number of edge states for magnetic Schrödinger operators, Proc. Lond. Math. Soc. (3) 95 (2007), 1-19 Zbl1131.35076MR2329546
  14. Rupert L. Frank, Michael Loss, Timo Weidl, Pólya’s conjecture in the presence of a constant magnetic field, J. Eur. Math. Soc. (JEMS) 11 (2009), 1365-1383 Zbl1179.35205MR2557138
  15. Fatma Ghribi, Internal Lifshits tails for random magnetic Schrödinger operators, J. Funct. Anal. 248 (2007), 387-427 Zbl1121.82022MR2335580
  16. B. Helffer, J. Sjöstrand, On diamagnetism and de Haas-van Alphen effect, Ann. Inst. H. Poincaré Phys. Théor. 52 (1990), 303-375 Zbl0715.35070MR1062904
  17. Bernard Helffer, Semi-classical analysis for the Schrödinger operator and applications, 1336 (1988), Springer-Verlag, Berlin Zbl0647.35002MR960278
  18. Bernard Helffer, Abderemane Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal. 138 (1996), 40-81 Zbl0851.58046MR1391630
  19. Bernard Helffer, Abderemane Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680 Zbl1078.81023MR1856278
  20. Bernard Helffer, D. Robert, Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal. 53 (1983), 246-268 Zbl0524.35103MR724029
  21. Bernard Helffer, J. Sjöstrand, Équation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger operators (Sønderborg, 1988) 345 (1989), 118-197, Springer, Berlin Zbl0699.35189MR1037319
  22. Klaus Hornberger, Uzy Smilansky, Magnetic edge states, Phys. Rep. 367 (2002), 249-385 MR1921565
  23. Thomas Hupfer, Hajo Leschke, Peter Müller, Simone Warzel, Existence and uniqueness of the integrated density of states for Schrödinger operators with magnetic fields and unbounded random potentials, Rev. Math. Phys. 13 (2001), 1547-1581 Zbl1029.81027MR1869817
  24. V. Ja. Ivriĭ, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen. 14 (1980), 25-34 Zbl0453.35068MR575202
  25. Hervé Kunz, Surface orbital magnetism, J. Statist. Phys. 76 (1994), 183-207 Zbl1080.82506MR1297876
  26. Elliott H. Lieb, Jan Philip Solovej, Jakob Yngvason, Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions, Comm. Math. Phys. 161 (1994), 77-124 Zbl0807.47058MR1266071
  27. Mikael Persson, Eigenvalue asymptotics of the even-dimensional exterior Landau-Neumann Hamiltonian, Adv. Math. Phys. (2009) Zbl1201.81055MR2500946
  28. Alexander Pushnitski, Grigori Rozenblum, Eigenvalue clusters of the Landau Hamiltonian in the exterior of a compact domain, Doc. Math. 12 (2007), 569-586 Zbl1132.35424MR2377242
  29. Yu. Safarov, D. Vassiliev, The asymptotic distribution of eigenvalues of partial differential operators, 155 (1997), American Mathematical Society, Providence, RI Zbl0898.35003MR1414899
  30. A. V. Sobolev, The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J. 74 (1994), 319-429 Zbl0824.35151MR1272980
  31. A. V. Sobolev, Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field, Ann. Inst. H. Poincaré Phys. Théor. 62 (1995), 325-360 Zbl0843.35024MR1343781
  32. A. V. Sobolev, Quasi-classical asymptotics for the Pauli operator, Comm. Math. Phys. 194 (1998), 109-134 Zbl0915.47052MR1628306
  33. Hideo Tamura, Asymptotic distribution of eigenvalues for Schrödinger operators with magnetic fields, Nagoya Math. J. 105 (1987), 49-69 Zbl0623.35048MR881008
  34. Yves Colin de Verdière, L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys. 105 (1986), 327-335 Zbl0612.35102MR849211

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.