Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field
Annales de l'I.H.P. Physique théorique (1995)
- Volume: 62, Issue: 4, page 325-360
- ISSN: 0246-0211
Access Full Article
topHow to cite
topSobolev, A. V.. "Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field." Annales de l'I.H.P. Physique théorique 62.4 (1995): 325-360. <http://eudml.org/doc/76678>.
@article{Sobolev1995,
author = {Sobolev, A. V.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Weyl asymptotics; remainder estimate for the trace},
language = {eng},
number = {4},
pages = {325-360},
publisher = {Gauthier-Villars},
title = {Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field},
url = {http://eudml.org/doc/76678},
volume = {62},
year = {1995},
}
TY - JOUR
AU - Sobolev, A. V.
TI - Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 62
IS - 4
SP - 325
EP - 360
LA - eng
KW - Weyl asymptotics; remainder estimate for the trace
UR - http://eudml.org/doc/76678
ER -
References
top- [1] W.O. Amrein, A.-M. Boutet de Monvel-Berthier and V. Georgescu, Notes on The N-Body Problem, Part II, University of Geneve, preprint, Geneve, 1991. MR991005
- [2] J. Avron, I. Herbst and B. Simon, Schrödinger operators with magnetic fields, I., Duke Math. J., Vol. 45 (4), 1978, pp. 847-883. Zbl0399.35029MR518109
- [3] C.L. Fefferman, V.J. Ivrii, L.A. Seco and I.M. Sigal, The energy asymptotics of large Coulomb systems, Lecture Notes in Physics, Vol. 403 (E. Balslev, ed.), Springer, Heidelberg, pp. 79-99. Zbl0834.47066MR1181242
- [4] B. Helffer and D. Robert, Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal., Vol. 53, 1983, pp. 246-268. Zbl0524.35103MR724029
- [5] L. Hörmander, The Analysis of Linear Partial Differential Operators, I, Springer, Berlin, 1983. Zbl0521.35001MR705278
- [6] V. Ivrii and I.M. Sigal, Asymptotics of the ground state energies of Large Coulomb systems, Ann. of Math., Vol. 138, 1993, pp. 243-335. Zbl0789.35135MR1240575
- [7] V. Ivrii, Semiclassical Microlocal Analysis and Precise Spectral Asymptotics, École Polytechnique, Preprints, Palaiseau, 1991-1992.
- [8] V. Ivrii, Estimates for the number of negative eigenvalues of the Schrödinger operator with a strong magnetic field, Soviet Math. Dokl., Vol. 36 (3), 1988, pp. 561-564. Zbl0661.35066MR936071
- [9] V. Ivrii, Estimates for the number of negative eigenvalues of the Schrödinger operator with singular potentials, Proc. Int. Congr. Math. Berkeley, 1986, pp. 1084-1093. Zbl0719.47031MR922080
- [10] L.D. Landau and E.M. Lifschitz, Quantum Mechanics - Nonrelativistic Theory, Pergamon Press, New York, 1965. Zbl0178.57901
- [11] E.H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Adv. in Math., Vol. 23, 1977, pp. 22-116. Zbl0938.81568MR428944
- [12] E.H. Lieb, J.P. Solovej and J. Yngvason, Heavy atoms in the strong magnetic field of a neutron star, Phys. Rev. Letters, Vol. 69, 1992, pp. 749-752.
- [13] E.H. Lieb, J.P. Solovej and J. Yngvason, Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions, Comm. Pure and Appl. Math. (to appear). Zbl0800.49041MR1272387
- [14] E.H. Lieb, J.P. Solovej and J. Yngvason, Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions, Comm. Math. Phys., Vol. 161, 1994, pp. 77-124. Zbl0807.47058MR1266071
- [15] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York, 1979. Zbl0405.47007
- [16] D. Robert, Autour de l'Approximation Semiclassique, Birkhäuser, Boston, 1987. Zbl0621.35001
- [17] B. Simon, Lectures on Trace Ideals Methods, Cambridge University Press, London, 1979. MR541149
- [18] A. Sobolev, The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J., Vol. 74 (2), 1994, pp. 319-429. Zbl0824.35151MR1272980
- [19] A. Sobolev, The sum of eigenvalues for the Schrödinger operator with Coulomb singularities in a homogeneous magnetic field, University of Nantes Preprint, 1993.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.