Good moduli spaces for Artin stacks
Jarod Alper[1]
- [1] Departmento de Matemáticas Universidad de los Andes Cra No. 18A-10 Bloque H Bogotá, 111711 Colombia
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 6, page 2349-2402
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAlper, Jarod. "Good moduli spaces for Artin stacks." Annales de l’institut Fourier 63.6 (2013): 2349-2402. <http://eudml.org/doc/275473>.
@article{Alper2013,
abstract = {We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.},
affiliation = {Departmento de Matemáticas Universidad de los Andes Cra No. 18A-10 Bloque H Bogotá, 111711 Colombia},
author = {Alper, Jarod},
journal = {Annales de l’institut Fourier},
keywords = {Artin stacks; geometric invariant theory; moduli spaces},
language = {eng},
number = {6},
pages = {2349-2402},
publisher = {Association des Annales de l’institut Fourier},
title = {Good moduli spaces for Artin stacks},
url = {http://eudml.org/doc/275473},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Alper, Jarod
TI - Good moduli spaces for Artin stacks
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2349
EP - 2402
AB - We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.
LA - eng
KW - Artin stacks; geometric invariant theory; moduli spaces
UR - http://eudml.org/doc/275473
ER -
References
top- Dan Abramovich, Martin Olsson, Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier, (Grenoble) 58 (2008), 1057-1091 Zbl1222.14004MR2427954
- Michael Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165-189 Zbl0317.14001MR399094
- A. Białynicki-Birula, On homogeneous affine spaces of linear algebraic groups, Amer. J. Math. 85 (1963), 577-582 Zbl0116.38202MR186674
- Lucia Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7 (1994), 589-660 Zbl0827.14014MR1254134
- Brian Conrad, Keel-mori theorem via stacks, (2005)
- P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), 75-109 Zbl0181.48803MR262240
- Gerd Faltings, Ching-Li Chai, Degeneration of abelian varieties, 22 (1990), Springer-Verlag, Berlin Zbl0744.14031MR1083353
- John Fogarty, Geometric quotients are algebraic schemes, Adv. in Math. 48 (1983), 166-171 Zbl0556.14023MR700982
- John Fogarty, Finite generation of certain subrings, Proc. Amer. Math. Soc. 99 (1987), 201-204 Zbl0627.13006MR866454
- D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2) 106 (1977), 45-60 Zbl0381.14003MR466475
- Alexander Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. (1961-1967) Zbl0122.16102
- W. J. Haboush, Homogeneous vector bundles and reductive subgroups of reductive algebraic groups, Amer. J. Math. 100 (1978), 1123-1137 Zbl0432.14029MR522693
- Brendan Hassett, Classical and minimal models of the moduli space of curves of genus two, Geometric methods in algebra and number theory 235 (2005), 169-192, Birkhäuser Boston, Boston, MA Zbl1094.14017MR2166084
- Brendan Hassett, Donghoon Hyeon, Log minimal model program for the moduli space of stable curves: The first flip, (2008) Zbl1273.14034
- Brendan Hassett, Donghoon Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), 4471-4489 Zbl1172.14018MR2500894
- Daniel Huybrechts, Manfred Lehn, The geometry of moduli spaces of sheaves, (1997), Friedr. Vieweg & Sohn, Braunschweig Zbl0872.14002MR1450870
- Donghoon Hyeon, Yongnam Lee, Log minimal model program for the moduli space of stable curves of genus three, (2007) Zbl1230.14035MR2661168
- Donghoon Hyeon, Yongnam Lee, Stability of tri-canonical curves of genus two, Math. Ann. 337 (2007), 479-488 Zbl1111.14017MR2262795
- Seán Keel, Shigefumi Mori, Quotients by groupoids, Ann. of Math. 145 (1997), 193-213 Zbl0881.14018MR1432041
- Friedrich Knop, Hanspeter Kraft, Thierry Vust, The Picard group of a -variety, Algebraische Transformationsgruppen und Invariantentheorie 13 (1989), 77-87, Birkhäuser, Basel Zbl0705.14005MR1044586
- Donald Knutson, Algebraic spaces, 203 (1971), Springer-Verlag, Berlin Zbl0221.14001MR302647
- Hanspeter Kraft, -vector bundles and the linearization problem, Group actions and invariant theory (Montreal, PQ, 1988) 110 (1989), 111-123, Amer. Math. Soc., Providence, RI Zbl0703.14009MR1021283
- Gérard Laumon, Laurent Moret-Bailly, Champs algébriques, 39 (2000), Springer-Verlag, Berlin Zbl0945.14005
- Max Lieblich, Moduli of twisted sheaves, Duke Math. J. 138 (2007), 23-118 Zbl1122.14012MR2309155
- Domingo Luna, Slices étalés, Sur les groupes algébriques 33 (1973), 81-105, Soc. Math. France, Paris Zbl0286.14014MR342523
- Masaki Maruyama, Moduli of stable sheaves. I, J. Math. Kyoto Univ. 17 (2007), 91-126 Zbl0374.14002MR450271
- Yozô Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J 16 (1960), 205-218 Zbl0094.28201MR109854
- Margarida Melo, Compactified picard stacks over the moduli stack of stable curves with marked points, (2008) Zbl1208.14010
- D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
- David Mumford, Geometric invariant theory, 22 (1965), Springer-Verlag, Berlin Zbl0147.39304MR214602
- Masayoshi Nagata, On the -th problem of Hilbert, Amer. J. Math. 81 (1959), 766-772 Zbl0192.13801MR105409
- Masayoshi Nagata, Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ. 1 (1961/1962), 87-99 Zbl0106.25201MR142667
- Masayoshi Nagata, Invariants of a group in an affine ring, J. Math. Kyoto Univ. 3 (1963/1964), 369-377 Zbl0146.04501MR179268
- Fabio Nironi, Moduli spaces of semistable sheaves on projective deligne-mumford stacks, (2008)
- Martin Olsson, Sheaves on Artin stacks, J. Reine Angew. Math. 603 (2007), 55-112 Zbl1137.14004MR2312554
- Michel Raynaud, Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1-89 Zbl0227.14010MR308104
- R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), 38-41 Zbl0355.14020MR437549
- David Rydh, Noetherian approximation of algebraic spaces and stacks, (2010) Zbl1308.14006
- David Rydh, Existence and properties of geometric quotients, J. Algebraic Geom. (2013) Zbl1278.14003MR3084720
- Schémas en groupes, 151,152,153 (1962/1964), Springer-Verlag, Berlin
- David Schubert, A new compactification of the moduli space of curves, Compositio Math. 78 (1991), 297-313 Zbl0735.14022MR1106299
- C. S. Seshadri, Geometric reductivity over arbitrary base, Advances in Math. 26 (1977), 225-274 Zbl0371.14009MR466154
- C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, 96 (1982), Société Mathématique de France, Paris Zbl0517.14008MR699278
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. (1994), 47-129 Zbl0891.14005MR1307297
- Angelo Vistoli, Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry 123 (2005), 1-104, Amer. Math. Soc., Providence, RI MR2223406
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.