Good moduli spaces for Artin stacks

Jarod Alper[1]

  • [1] Departmento de Matemáticas Universidad de los Andes Cra No. 18A-10 Bloque H Bogotá, 111711 Colombia

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 6, page 2349-2402
  • ISSN: 0373-0956

Abstract

top
We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.

How to cite

top

Alper, Jarod. "Good moduli spaces for Artin stacks." Annales de l’institut Fourier 63.6 (2013): 2349-2402. <http://eudml.org/doc/275473>.

@article{Alper2013,
abstract = {We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.},
affiliation = {Departmento de Matemáticas Universidad de los Andes Cra No. 18A-10 Bloque H Bogotá, 111711 Colombia},
author = {Alper, Jarod},
journal = {Annales de l’institut Fourier},
keywords = {Artin stacks; geometric invariant theory; moduli spaces},
language = {eng},
number = {6},
pages = {2349-2402},
publisher = {Association des Annales de l’institut Fourier},
title = {Good moduli spaces for Artin stacks},
url = {http://eudml.org/doc/275473},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Alper, Jarod
TI - Good moduli spaces for Artin stacks
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2349
EP - 2402
AB - We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.
LA - eng
KW - Artin stacks; geometric invariant theory; moduli spaces
UR - http://eudml.org/doc/275473
ER -

References

top
  1. Dan Abramovich, Martin Olsson, Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier, (Grenoble) 58 (2008), 1057-1091 Zbl1222.14004MR2427954
  2. Michael Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165-189 Zbl0317.14001MR399094
  3. A. Białynicki-Birula, On homogeneous affine spaces of linear algebraic groups, Amer. J. Math. 85 (1963), 577-582 Zbl0116.38202MR186674
  4. Lucia Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7 (1994), 589-660 Zbl0827.14014MR1254134
  5. Brian Conrad, Keel-mori theorem via stacks, (2005) 
  6. P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), 75-109 Zbl0181.48803MR262240
  7. Gerd Faltings, Ching-Li Chai, Degeneration of abelian varieties, 22 (1990), Springer-Verlag, Berlin Zbl0744.14031MR1083353
  8. John Fogarty, Geometric quotients are algebraic schemes, Adv. in Math. 48 (1983), 166-171 Zbl0556.14023MR700982
  9. John Fogarty, Finite generation of certain subrings, Proc. Amer. Math. Soc. 99 (1987), 201-204 Zbl0627.13006MR866454
  10. D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2) 106 (1977), 45-60 Zbl0381.14003MR466475
  11. Alexander Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. (1961-1967) Zbl0122.16102
  12. W. J. Haboush, Homogeneous vector bundles and reductive subgroups of reductive algebraic groups, Amer. J. Math. 100 (1978), 1123-1137 Zbl0432.14029MR522693
  13. Brendan Hassett, Classical and minimal models of the moduli space of curves of genus two, Geometric methods in algebra and number theory 235 (2005), 169-192, Birkhäuser Boston, Boston, MA Zbl1094.14017MR2166084
  14. Brendan Hassett, Donghoon Hyeon, Log minimal model program for the moduli space of stable curves: The first flip, (2008) Zbl1273.14034
  15. Brendan Hassett, Donghoon Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), 4471-4489 Zbl1172.14018MR2500894
  16. Daniel Huybrechts, Manfred Lehn, The geometry of moduli spaces of sheaves, (1997), Friedr. Vieweg & Sohn, Braunschweig Zbl0872.14002MR1450870
  17. Donghoon Hyeon, Yongnam Lee, Log minimal model program for the moduli space of stable curves of genus three, (2007) Zbl1230.14035MR2661168
  18. Donghoon Hyeon, Yongnam Lee, Stability of tri-canonical curves of genus two, Math. Ann. 337 (2007), 479-488 Zbl1111.14017MR2262795
  19. Seán Keel, Shigefumi Mori, Quotients by groupoids, Ann. of Math. 145 (1997), 193-213 Zbl0881.14018MR1432041
  20. Friedrich Knop, Hanspeter Kraft, Thierry Vust, The Picard group of a G -variety, Algebraische Transformationsgruppen und Invariantentheorie 13 (1989), 77-87, Birkhäuser, Basel Zbl0705.14005MR1044586
  21. Donald Knutson, Algebraic spaces, 203 (1971), Springer-Verlag, Berlin Zbl0221.14001MR302647
  22. Hanspeter Kraft, G -vector bundles and the linearization problem, Group actions and invariant theory (Montreal, PQ, 1988) 110 (1989), 111-123, Amer. Math. Soc., Providence, RI Zbl0703.14009MR1021283
  23. Gérard Laumon, Laurent Moret-Bailly, Champs algébriques, 39 (2000), Springer-Verlag, Berlin Zbl0945.14005
  24. Max Lieblich, Moduli of twisted sheaves, Duke Math. J. 138 (2007), 23-118 Zbl1122.14012MR2309155
  25. Domingo Luna, Slices étalés, Sur les groupes algébriques 33 (1973), 81-105, Soc. Math. France, Paris Zbl0286.14014MR342523
  26. Masaki Maruyama, Moduli of stable sheaves. I, J. Math. Kyoto Univ. 17 (2007), 91-126 Zbl0374.14002MR450271
  27. Yozô Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J 16 (1960), 205-218 Zbl0094.28201MR109854
  28. Margarida Melo, Compactified picard stacks over the moduli stack of stable curves with marked points, (2008) Zbl1208.14010
  29. D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
  30. David Mumford, Geometric invariant theory, 22 (1965), Springer-Verlag, Berlin Zbl0147.39304MR214602
  31. Masayoshi Nagata, On the 14 -th problem of Hilbert, Amer. J. Math. 81 (1959), 766-772 Zbl0192.13801MR105409
  32. Masayoshi Nagata, Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ. 1 (1961/1962), 87-99 Zbl0106.25201MR142667
  33. Masayoshi Nagata, Invariants of a group in an affine ring, J. Math. Kyoto Univ. 3 (1963/1964), 369-377 Zbl0146.04501MR179268
  34. Fabio Nironi, Moduli spaces of semistable sheaves on projective deligne-mumford stacks, (2008) 
  35. Martin Olsson, Sheaves on Artin stacks, J. Reine Angew. Math. 603 (2007), 55-112 Zbl1137.14004MR2312554
  36. Michel Raynaud, Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1-89 Zbl0227.14010MR308104
  37. R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), 38-41 Zbl0355.14020MR437549
  38. David Rydh, Noetherian approximation of algebraic spaces and stacks, (2010) Zbl1308.14006
  39. David Rydh, Existence and properties of geometric quotients, J. Algebraic Geom. (2013) Zbl1278.14003MR3084720
  40. Schémas en groupes, 151,152,153 (1962/1964), Springer-Verlag, Berlin 
  41. David Schubert, A new compactification of the moduli space of curves, Compositio Math. 78 (1991), 297-313 Zbl0735.14022MR1106299
  42. C. S. Seshadri, Geometric reductivity over arbitrary base, Advances in Math. 26 (1977), 225-274 Zbl0371.14009MR466154
  43. C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, 96 (1982), Société Mathématique de France, Paris Zbl0517.14008MR699278
  44. Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. (1994), 47-129 Zbl0891.14005MR1307297
  45. Angelo Vistoli, Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry 123 (2005), 1-104, Amer. Math. Soc., Providence, RI MR2223406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.