Tame stacks in positive characteristic

Dan Abramovich[1]; Martin Olsson[2]; Angelo Vistoli[3]

  • [1] Brown University Department of Mathematics Box 1917 Providence, RI 02912 (USA)
  • [2] University of California Department of Mathematics #3840 Berkeley, CA 94720-3840 (USA)
  • [3] Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa (Italy)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 4, page 1057-1091
  • ISSN: 0373-0956

Abstract

top
We introduce and study a class of algebraic stacks with finite inertia in positive and mixed characteristic, which we call tame algebraic stacks. They include tame Deligne-Mumford stacks, and are arguably better behaved than general Deligne-Mumford stacks. We also give a complete characterization of finite flat linearly reductive schemes over an arbitrary base. Our main result is that tame algebraic stacks are étale locally quotient by actions of linearly reductive finite group schemes.

How to cite

top

Abramovich, Dan, Olsson, Martin, and Vistoli, Angelo. "Tame stacks in positive characteristic." Annales de l’institut Fourier 58.4 (2008): 1057-1091. <http://eudml.org/doc/10342>.

@article{Abramovich2008,
abstract = {We introduce and study a class of algebraic stacks with finite inertia in positive and mixed characteristic, which we call tame algebraic stacks. They include tame Deligne-Mumford stacks, and are arguably better behaved than general Deligne-Mumford stacks. We also give a complete characterization of finite flat linearly reductive schemes over an arbitrary base. Our main result is that tame algebraic stacks are étale locally quotient by actions of linearly reductive finite group schemes.},
affiliation = {Brown University Department of Mathematics Box 1917 Providence, RI 02912 (USA); University of California Department of Mathematics #3840 Berkeley, CA 94720-3840 (USA); Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa (Italy)},
author = {Abramovich, Dan, Olsson, Martin, Vistoli, Angelo},
journal = {Annales de l’institut Fourier},
keywords = {Algebraic stacks; moduli spaces; group schemes; algebraic stacks},
language = {eng},
number = {4},
pages = {1057-1091},
publisher = {Association des Annales de l’institut Fourier},
title = {Tame stacks in positive characteristic},
url = {http://eudml.org/doc/10342},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Abramovich, Dan
AU - Olsson, Martin
AU - Vistoli, Angelo
TI - Tame stacks in positive characteristic
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1057
EP - 1091
AB - We introduce and study a class of algebraic stacks with finite inertia in positive and mixed characteristic, which we call tame algebraic stacks. They include tame Deligne-Mumford stacks, and are arguably better behaved than general Deligne-Mumford stacks. We also give a complete characterization of finite flat linearly reductive schemes over an arbitrary base. Our main result is that tame algebraic stacks are étale locally quotient by actions of linearly reductive finite group schemes.
LA - eng
KW - Algebraic stacks; moduli spaces; group schemes; algebraic stacks
UR - http://eudml.org/doc/10342
ER -

References

top
  1. D. Abramovich, A. Corti, A. Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003), 3547-3618 Zbl1077.14034MR2007376
  2. D. Abramovich, T. Graber, A. Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, preprint Zbl1193.14070
  3. D. Abramovich, A. Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc 15 (2002), 27-75 Zbl0991.14007MR1862797
  4. M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165-189 Zbl0317.14001MR399094
  5. K. Behrend, B. Noohi, Uniformization of Deligne–Mumford curves, J. Reine Angew. Math. Zbl1124.14004
  6. P. Berthelot, A. Grothendieck, L. Illusie, Théorie des Intersections et Théorème de Riemann-Roch (SGA 6), 225 (1971), Springer Lecture Notes in Math Zbl0218.14001MR354655
  7. B. Conrad, Keel-Mori theorem via stacks 
  8. P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109 Zbl0181.48803MR262240
  9. M. Demazure, al., Schémas en groupes, 151, 152 and 153 (1970), Springer-Verlag Zbl0207.51401MR274458
  10. J. Dieudonné, A. Grothendieck, Éléments de géométrie algébrique, 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967), Inst. Hautes Études Sci. Publ. Math. Zbl0203.23301
  11. J. Giraud, Cohomologie non abélienne, (1971), Springer-Verlag, Berlin Zbl0226.14011MR344253
  12. D. Gorenstein, Finite groups, (1980), Chelsea Publishing Co., New York Zbl0463.20012MR569209
  13. L. Gruson, M. Raynaud, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1-89 Zbl0227.14010
  14. L. Illusie, Complexe cotangent et déformations. I, 239 (1971), Springer, Berlin Zbl0224.13014MR491680
  15. N. Jacobson, Lie algebras, (1979), Dover Publications, Inc., New York Zbl0121.27504MR559927
  16. S. Keel, S. Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), 193-213 Zbl0881.14018MR1432041
  17. S. Kleiman, The Picard scheme, Fundamental algebraic geometry (2005), 235-321, Math. Surveys Monogr. 123, Amer. Math. Soc., Providence, RI Zbl1085.14001MR2223410
  18. A. Kresch, Geometry of Deligne–Mumford stacks, preprint Zbl1169.14001
  19. G. Laumon, L. Moret-Bailly, Champs Algébriques, 39 (2000), Springer-Verlag Zbl0945.14005MR1771927
  20. J. S. Milne, Étale cohomology, (1980), Princeton University Press Zbl0433.14012MR559531
  21. D. Mumford, Abelian varieties, (1970), Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London Zbl0223.14022MR282985
  22. M. Olsson, A boundedness theorem for Hom-stacks, preprint (2005) Zbl1134.14001MR2357471
  23. M. Olsson, On proper coverings of Artin stacks, Advances in Mathematics 198 (2005), 93-106 Zbl1084.14004MR2183251
  24. M. Olsson, Deformation theory of representable morphisms of algebraic stacks, Math. Zeit. 53 (2006), 25-62 Zbl1096.14007MR2206635
  25. M. Olsson, Hom-stacks and restriction of scalars, Duke Math. J. 134 (2006), 139-164 Zbl1114.14002MR2239345
  26. M. Olsson, Sheaves on Artin stacks, J. Reine Angew. Math. (Crelle’s Journal) 603 (2007), 55-112 Zbl1137.14004
  27. M. Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005), 209-236 Zbl1100.14001MR2125542
  28. N. Saavedra Rivano, Catégories Tannakiennes, 265 (1972), Springer-Verlag, Berlin-New York Zbl0241.14008MR338002
  29. R. W. Thomason, Algebraic K-theory of group scheme actions, 113 (1987), Annals of Mathematical Studies, Princeton University Press, Princeton Zbl0701.19002MR921490
  30. A. Vistoli, Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry (2005), 1-104 MR2223406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.