Tame stacks in positive characteristic
Dan Abramovich[1]; Martin Olsson[2]; Angelo Vistoli[3]
- [1] Brown University Department of Mathematics Box 1917 Providence, RI 02912 (USA)
- [2] University of California Department of Mathematics #3840 Berkeley, CA 94720-3840 (USA)
- [3] Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa (Italy)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 4, page 1057-1091
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAbramovich, Dan, Olsson, Martin, and Vistoli, Angelo. "Tame stacks in positive characteristic." Annales de l’institut Fourier 58.4 (2008): 1057-1091. <http://eudml.org/doc/10342>.
@article{Abramovich2008,
abstract = {We introduce and study a class of algebraic stacks with finite inertia in positive and mixed characteristic, which we call tame algebraic stacks. They include tame Deligne-Mumford stacks, and are arguably better behaved than general Deligne-Mumford stacks. We also give a complete characterization of finite flat linearly reductive schemes over an arbitrary base. Our main result is that tame algebraic stacks are étale locally quotient by actions of linearly reductive finite group schemes.},
affiliation = {Brown University Department of Mathematics Box 1917 Providence, RI 02912 (USA); University of California Department of Mathematics #3840 Berkeley, CA 94720-3840 (USA); Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa (Italy)},
author = {Abramovich, Dan, Olsson, Martin, Vistoli, Angelo},
journal = {Annales de l’institut Fourier},
keywords = {Algebraic stacks; moduli spaces; group schemes; algebraic stacks},
language = {eng},
number = {4},
pages = {1057-1091},
publisher = {Association des Annales de l’institut Fourier},
title = {Tame stacks in positive characteristic},
url = {http://eudml.org/doc/10342},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Abramovich, Dan
AU - Olsson, Martin
AU - Vistoli, Angelo
TI - Tame stacks in positive characteristic
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1057
EP - 1091
AB - We introduce and study a class of algebraic stacks with finite inertia in positive and mixed characteristic, which we call tame algebraic stacks. They include tame Deligne-Mumford stacks, and are arguably better behaved than general Deligne-Mumford stacks. We also give a complete characterization of finite flat linearly reductive schemes over an arbitrary base. Our main result is that tame algebraic stacks are étale locally quotient by actions of linearly reductive finite group schemes.
LA - eng
KW - Algebraic stacks; moduli spaces; group schemes; algebraic stacks
UR - http://eudml.org/doc/10342
ER -
References
top- D. Abramovich, A. Corti, A. Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003), 3547-3618 Zbl1077.14034MR2007376
- D. Abramovich, T. Graber, A. Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, preprint Zbl1193.14070
- D. Abramovich, A. Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc 15 (2002), 27-75 Zbl0991.14007MR1862797
- M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165-189 Zbl0317.14001MR399094
- K. Behrend, B. Noohi, Uniformization of Deligne–Mumford curves, J. Reine Angew. Math. Zbl1124.14004
- P. Berthelot, A. Grothendieck, L. Illusie, Théorie des Intersections et Théorème de Riemann-Roch (SGA 6), 225 (1971), Springer Lecture Notes in Math Zbl0218.14001MR354655
- B. Conrad, Keel-Mori theorem via stacks
- P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109 Zbl0181.48803MR262240
- M. Demazure, al., Schémas en groupes, 151, 152 and 153 (1970), Springer-Verlag Zbl0207.51401MR274458
- J. Dieudonné, A. Grothendieck, Éléments de géométrie algébrique, 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967), Inst. Hautes Études Sci. Publ. Math. Zbl0203.23301
- J. Giraud, Cohomologie non abélienne, (1971), Springer-Verlag, Berlin Zbl0226.14011MR344253
- D. Gorenstein, Finite groups, (1980), Chelsea Publishing Co., New York Zbl0463.20012MR569209
- L. Gruson, M. Raynaud, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1-89 Zbl0227.14010
- L. Illusie, Complexe cotangent et déformations. I, 239 (1971), Springer, Berlin Zbl0224.13014MR491680
- N. Jacobson, Lie algebras, (1979), Dover Publications, Inc., New York Zbl0121.27504MR559927
- S. Keel, S. Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), 193-213 Zbl0881.14018MR1432041
- S. Kleiman, The Picard scheme, Fundamental algebraic geometry (2005), 235-321, Math. Surveys Monogr. 123, Amer. Math. Soc., Providence, RI Zbl1085.14001MR2223410
- A. Kresch, Geometry of Deligne–Mumford stacks, preprint Zbl1169.14001
- G. Laumon, L. Moret-Bailly, Champs Algébriques, 39 (2000), Springer-Verlag Zbl0945.14005MR1771927
- J. S. Milne, Étale cohomology, (1980), Princeton University Press Zbl0433.14012MR559531
- D. Mumford, Abelian varieties, (1970), Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London Zbl0223.14022MR282985
- M. Olsson, A boundedness theorem for Hom-stacks, preprint (2005) Zbl1134.14001MR2357471
- M. Olsson, On proper coverings of Artin stacks, Advances in Mathematics 198 (2005), 93-106 Zbl1084.14004MR2183251
- M. Olsson, Deformation theory of representable morphisms of algebraic stacks, Math. Zeit. 53 (2006), 25-62 Zbl1096.14007MR2206635
- M. Olsson, Hom-stacks and restriction of scalars, Duke Math. J. 134 (2006), 139-164 Zbl1114.14002MR2239345
- M. Olsson, Sheaves on Artin stacks, J. Reine Angew. Math. (Crelle’s Journal) 603 (2007), 55-112 Zbl1137.14004
- M. Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005), 209-236 Zbl1100.14001MR2125542
- N. Saavedra Rivano, Catégories Tannakiennes, 265 (1972), Springer-Verlag, Berlin-New York Zbl0241.14008MR338002
- R. W. Thomason, Algebraic K-theory of group scheme actions, 113 (1987), Annals of Mathematical Studies, Princeton University Press, Princeton Zbl0701.19002MR921490
- A. Vistoli, Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry (2005), 1-104 MR2223406
Citations in EuDML Documents
top- Dan Abramovich, Martin Olsson, Angelo Vistoli, Corrigendum to : « Tame stacks in positive characteristic »
- Matthew Satriano, de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities
- Martin Olsson, Integral models for moduli spaces of -torsors
- Jarod Alper, Good moduli spaces for Artin stacks
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.