Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions

Adrien Deloro[1]

  • [1] Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France

Confluentes Mathematici (2013)

  • Volume: 5, Issue: 2, page 23-41
  • ISSN: 1793-7434

Abstract

top
We classify quadratic SL 2 ( 𝕂 ) - and 𝔰𝔩 2 ( 𝕂 ) -modules by crude computation, generalising in the first case a Theorem proved independently by F.G. Timmesfeld and S. Smith. The paper is the first of a series dealing with linearisation results for abstract modules of algebraic groups and associated Lie rings.

How to cite

top

Deloro, Adrien. "Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions." Confluentes Mathematici 5.2 (2013): 23-41. <http://eudml.org/doc/275476>.

@article{Deloro2013,
abstract = {We classify quadratic $\operatorname\{SL\}_2(\mathbb\{K\})$- and $\mathfrak\{sl\}_2(\mathbb\{K\})$-modules by crude computation, generalising in the first case a Theorem proved independently by F.G. Timmesfeld and S. Smith. The paper is the first of a series dealing with linearisation results for abstract modules of algebraic groups and associated Lie rings.},
affiliation = {Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France},
author = {Deloro, Adrien},
journal = {Confluentes Mathematici},
keywords = {quadratic modules; modules of algebraic groups; associated Lie rings},
language = {eng},
number = {2},
pages = {23-41},
publisher = {Institut Camille Jordan},
title = {Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions},
url = {http://eudml.org/doc/275476},
volume = {5},
year = {2013},
}

TY - JOUR
AU - Deloro, Adrien
TI - Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions
JO - Confluentes Mathematici
PY - 2013
PB - Institut Camille Jordan
VL - 5
IS - 2
SP - 23
EP - 41
AB - We classify quadratic $\operatorname{SL}_2(\mathbb{K})$- and $\mathfrak{sl}_2(\mathbb{K})$-modules by crude computation, generalising in the first case a Theorem proved independently by F.G. Timmesfeld and S. Smith. The paper is the first of a series dealing with linearisation results for abstract modules of algebraic groups and associated Lie rings.
LA - eng
KW - quadratic modules; modules of algebraic groups; associated Lie rings
UR - http://eudml.org/doc/275476
ER -

References

top
  1. Andrew Chermak, Quadratic pairs, J. Algebra 277 (2004), 36-72 Zbl1057.20001MR2059620
  2. George Glauberman, A sufficient condition for p stability, Proc. London Math. Soc. (3) 25 (1972), 253-287 Zbl0242.20018MR313383
  3. Chat-Yin Ho, On the quadratic pairs, J. Algebra 43 (1976), 338-358 Zbl0385.20006MR422404
  4. Alexander Arcadievitch Premet, Irina Dmitrievna Suprunenko, Quadratic modules for Chevalley groups over fields of odd characteristics, Math. Nachr. 110 (1983), 65-96 Zbl0522.20027MR721267
  5. Stephen D. Smith, Quadratic action and the natural module for SL 2 ( k ) , J. Algebra 127 (1989), 155-162 Zbl0688.20023MR1029409
  6. John G. Thompson, Quadratic pairs, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1 (1971), 375-376, Gauthier-Villars, Paris Zbl0236.20024MR430043
  7. Franz Georg Timmesfeld, Groups generated by k -transvections, Invent. Math. 100 (1990), 167-206 Zbl0697.20018MR1037146
  8. Franz Georg Timmesfeld, Abstract root subgroups and quadratic action, Adv. Math. 142 (1999), 1-150 Zbl0934.20025MR1671440
  9. Franz Georg Timmesfeld, Abstract root subgroups and simple groups of Lie type, 95 (2001), Birkhäuser Verlag, Basel Zbl0984.20019MR1852057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.