Quantum Cohomology and Periods

Hiroshi Iritani[1]

  • [1] Kyoto University Department of Mathematics Kitashirakawa-Oiwake-cho Sakyo-ku, Kyoto, 606-8502 (Japan)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 7, page 2909-2958
  • ISSN: 0373-0956

Abstract

top
In a previous paper, the author introduced an integral structure in quantum cohomology defined by the K -theory and the Gamma class and showed that it is compatible with mirror symmetry for toric orbifolds. Applying the quantum Lefschetz principle to the previous results, we find an explicit relationship between solutions to the quantum differential equation of toric complete intersections and the periods (or oscillatory integrals) of their mirrors. We describe in detail the mirror isomorphism of variations of integral Hodge structure for a mirror pair of Calabi-Yau hypersurfaces (Batyrev’s mirror).

How to cite

top

Iritani, Hiroshi. "Quantum Cohomology and Periods." Annales de l’institut Fourier 61.7 (2011): 2909-2958. <http://eudml.org/doc/275478>.

@article{Iritani2011,
abstract = {In a previous paper, the author introduced an integral structure in quantum cohomology defined by the $K$-theory and the Gamma class and showed that it is compatible with mirror symmetry for toric orbifolds. Applying the quantum Lefschetz principle to the previous results, we find an explicit relationship between solutions to the quantum differential equation of toric complete intersections and the periods (or oscillatory integrals) of their mirrors. We describe in detail the mirror isomorphism of variations of integral Hodge structure for a mirror pair of Calabi-Yau hypersurfaces (Batyrev’s mirror).},
affiliation = {Kyoto University Department of Mathematics Kitashirakawa-Oiwake-cho Sakyo-ku, Kyoto, 606-8502 (Japan)},
author = {Iritani, Hiroshi},
journal = {Annales de l’institut Fourier},
keywords = {quantum cohomology; mirror symmetry; Gamma class; $K$-theory; period; oscillatory integral; variation of Hodge structure; GKZ system; toric variety; orbifold; gamma class; -theory},
language = {eng},
number = {7},
pages = {2909-2958},
publisher = {Association des Annales de l’institut Fourier},
title = {Quantum Cohomology and Periods},
url = {http://eudml.org/doc/275478},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Iritani, Hiroshi
TI - Quantum Cohomology and Periods
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2909
EP - 2958
AB - In a previous paper, the author introduced an integral structure in quantum cohomology defined by the $K$-theory and the Gamma class and showed that it is compatible with mirror symmetry for toric orbifolds. Applying the quantum Lefschetz principle to the previous results, we find an explicit relationship between solutions to the quantum differential equation of toric complete intersections and the periods (or oscillatory integrals) of their mirrors. We describe in detail the mirror isomorphism of variations of integral Hodge structure for a mirror pair of Calabi-Yau hypersurfaces (Batyrev’s mirror).
LA - eng
KW - quantum cohomology; mirror symmetry; Gamma class; $K$-theory; period; oscillatory integral; variation of Hodge structure; GKZ system; toric variety; orbifold; gamma class; -theory
UR - http://eudml.org/doc/275478
ER -

References

top
  1. Dan Abramovich, Tom Graber, Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), 1337-1398 Zbl1193.14070MR2450211
  2. Serguei Barannikov, Quantum periods. I. Semi-infinite variations of Hodge structures, Internat. Math. Res. Notices (2001), 1243-1264 Zbl1074.14510MR1866443
  3. Victor V. Batyrev, Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J. 69 (1993), 349-409 Zbl0812.14035MR1203231
  4. Victor V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), 493-535 Zbl0829.14023MR1269718
  5. Victor V. Batyrev, Lev A. Borisov, On Calabi-Yau complete intersections in toric varieties, Higher-dimensional complex varieties (Trento, 1994) (1996), 39-65, de Gruyter, Berlin Zbl0908.14015MR1463173
  6. Victor V. Batyrev, David A. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994), 293-338 Zbl0851.14021MR1290195
  7. Lev A. Borisov, Linda Chen, Gregory G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc. 18 (2005), 193-215 (electronic) Zbl1178.14057MR2114820
  8. Lev A. Borisov, R. Paul Horja, On the better behaved version of the GKZ hypergeometric system Zbl1284.33012
  9. Lev A. Borisov, R. Paul Horja, Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math. 207 (2006), 876-927 Zbl1137.14314MR2271990
  10. Lev A. Borisov, R. Paul Horja, On the K -theory of smooth toric DM stacks, Snowbird lectures on string geometry 401 (2006), 21-42, Amer. Math. Soc., Providence, RI Zbl1171.14301MR2222527
  11. Lev A. Borisov, Anvar R. Mavlyutov, String cohomology of Calabi-Yau hypersurfaces via mirror symmetry, Adv. Math. 180 (2003), 355-390 Zbl1055.14044MR2019228
  12. Philip Candelas, Xenia C. de la Ossa, Paul S. Green, Linda Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 21-74 Zbl1098.32506MR1115626
  13. Weimin Chen, Yongbin Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 25-85, Amer. Math. Soc., Providence, RI Zbl1091.53058MR1950941
  14. Weimin Chen, Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 1-31 Zbl1063.53091MR2104605
  15. Tom Coates, Alessio Corti, Hiroshi Iritani, Hsian-Hua Tseng 
  16. Tom Coates, Alessio Corti, Hiroshi Iritani, Hsian-Hua Tseng, Computing genus-zero twisted Gromov-Witten invariants, Duke Math. J. 147 (2009), 377-438 Zbl1176.14009MR2510741
  17. Tom Coates, Alexander Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (2007), 15-53 Zbl1189.14063MR2276766
  18. Tom Coates, Yuan-Pin Lee, Alessio Corti, Hsian-Hua Tseng, The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009), 139-193 Zbl1213.53106MR2506749
  19. Alessio Corti, Vasily Golyshev, Hypergeometric Equations and Weighted Projective Spaces Zbl1237.14022
  20. David A. Cox, Sheldon Katz, Mirror symmetry and algebraic geometry, 68 (1999), American Mathematical Society, Providence, RI Zbl0951.14026MR1677117
  21. V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), 85-134, 247 Zbl0425.14013MR495499
  22. V. I. Danilov, A. G. Khovanskiĭ, Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 925-945 Zbl0669.14012MR873655
  23. William Fulton, Intersection theory, 2 (1998), Springer-Verlag, Berlin Zbl0541.14005MR1644323
  24. I. M. Gel’fand, A. V. Zelevinskiĭ, M. M. Kapranov, Hypergeometric functions and toric varieties, Funktsional. Anal. i Prilozhen. 23 (1989), 12-26 Zbl0721.33006
  25. Alexander Givental, A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996) 160 (1998), 141-175, Birkhäuser Boston, Boston, MA Zbl0936.14031MR1653024
  26. Alexander B. Givental, Homological geometry and mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (1995), 472-480, Birkhäuser, Basel Zbl0863.14021MR1403947
  27. Alexander B. Givental, Symplectic geometry of Frobenius structures, Frobenius manifolds (2004), 91-112, Vieweg, Wiesbaden Zbl1075.53091MR2115767
  28. Martin A. Guest, Quantum cohomology via D -modules, Topology 44 (2005), 263-281 Zbl1081.53077MR2114708
  29. Martin A. Guest, Hironori Sakai, Orbifold quantum D-modules associated to weighted projective spaces 
  30. Heinrich Hartmann, Period- and mirror-map for the quartic K3 Zbl1303.14044
  31. Claus Hertling, t t * geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math. 555 (2003), 77-161 Zbl1040.53095MR1956595
  32. Kentaro Hori, Cumrun Vafa, Mirror symmetry 
  33. Shinobu Hosono, Central charges, symplectic forms, and hypergeometric series in local mirror symmetry, Mirror symmetry. V 38 (2006), 405-439, Amer. Math. Soc., Providence, RI Zbl1114.14025MR2282969
  34. Zheng Hua, On the Grothendieck groups of toric stacks 
  35. Hiroshi Iritani, t t * -geometry in quantum cohomology Zbl1231.14046
  36. Hiroshi Iritani, Quantum D -modules and generalized mirror transformations, Topology 47 (2008), 225-276 Zbl1170.53071MR2416770
  37. Hiroshi Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079 Zbl1190.14054MR2553377
  38. Hiroshi Iritani, Ruan’s conjecture and integral structures in quantum cohomology, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) 59 (2010), 111-166, Math. Soc. Japan, Tokyo Zbl1231.14046MR2683208
  39. Yunfeng Jiang, The orbifold cohomology ring of simplicial toric stack bundles, Illinois J. Math. 52 (2008), 493-514 Zbl1231.14002MR2524648
  40. L. Katzarkov, M. Kontsevich, T. Pantev, Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT tt*-geometry 78 (2008), 87-174, Amer. Math. Soc., Providence, RI Zbl1206.14009MR2483750
  41. Yujiro Kawamata, Derived categories of toric varieties, Michigan Math. J. 54 (2006), 517-535 Zbl1159.14026MR2280493
  42. Tetsuro Kawasaki, The Riemann-Roch theorem for complex V -manifolds, Osaka J. Math. 16 (1979), 151-159 Zbl0405.32010MR527023
  43. Bumsig Kim, Andrew Kresch, Tony Pantev, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003), 127-136 Zbl1078.14535MR1958379
  44. Yukiko Konishi, Satoshi Minabe, Local B-model and mixed Hodge structure, Adv. Theor. Math. Phys. 14 (2010), 1089-1145 Zbl1229.81243MR2821394
  45. Etienne Mann, Thierry Mignon, Quantum D -modules for toric nef complete intersections 
  46. Anvar R. Mavlyutov, Semiample hypersurfaces in toric varieties, Duke Math. J. 101 (2000), 85-116 Zbl1023.14027MR1733735
  47. Anvar R. Mavlyutov, On the chiral ring of Calabi-Yau hypersurfaces in toric varieties, Compositio Math. 138 (2003), 289-336 Zbl1117.14052MR2019444
  48. Tadao Oda, Convex bodies and algebraic geometry, 15 (1988), Springer-Verlag, Berlin Zbl0628.52002MR922894
  49. Rahul Pandharipande, Rational curves on hypersurfaces (after A. Givental), Astérisque (1998), Exp. No. 848, 5, 307-340 Zbl0932.14029MR1685628
  50. Frédéric Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Astérisque (1985), 11-47 Zbl0597.32012MR804048
  51. Andrew Pressley, Graeme Segal, Loop groups, (1986), The Clarendon Press Oxford University Press, New York Zbl0638.22009MR900587
  52. Victor Przyjalkowski, On Landau-Ginzburg models for Fano varieties, Commun. Number Theory Phys. 1 (2007), 713-728 Zbl1194.14065MR2412270
  53. Jan Stienstra, Resonant hypergeometric systems and mirror symmetry, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) (1998), 412-452, World Sci. Publ., River Edge, NJ Zbl0963.14017MR1672077
  54. B. Toen, Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, -Theory 18 (1999), 33-76 Zbl0946.14004MR1710187
  55. Hsian-Hua Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), 1-81 Zbl1178.14058MR2578300
  56. Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), 613-670 Zbl0694.14001MR1005008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.