Receding polar regions of a spherical building and the center conjecture

Bernhard Mühlherr[1]; Richard M. Weiss[2]

  • [1] University of Giessen Institute for Mathematics Arndtstrasse 2 35392 Giessen (Germany)
  • [2] Tufts University Department of Mathematics 503 Boston Avenue Medford, MA 02155 (USA)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 2, page 479-513
  • ISSN: 0373-0956

Abstract

top
We introduce the notion of a polar region of a spherical building and use some simple observations about polar regions to give elementary proofs of various fundamental properties of root groups. We combine some of these observations with results of Timmesfeld, Balser and Lytchak to give a new proof of the center conjecture for convex chamber subcomplexes of thick spherical buildings.

How to cite

top

Mühlherr, Bernhard, and Weiss, Richard M.. "Receding polar regions of a spherical building and the center conjecture." Annales de l’institut Fourier 63.2 (2013): 479-513. <http://eudml.org/doc/275482>.

@article{Mühlherr2013,
abstract = {We introduce the notion of a polar region of a spherical building and use some simple observations about polar regions to give elementary proofs of various fundamental properties of root groups. We combine some of these observations with results of Timmesfeld, Balser and Lytchak to give a new proof of the center conjecture for convex chamber subcomplexes of thick spherical buildings.},
affiliation = {University of Giessen Institute for Mathematics Arndtstrasse 2 35392 Giessen (Germany); Tufts University Department of Mathematics 503 Boston Avenue Medford, MA 02155 (USA)},
author = {Mühlherr, Bernhard, Weiss, Richard M.},
journal = {Annales de l’institut Fourier},
keywords = {Spherical building; root group; the center conjecture; spherical buildings; root groups; Tits center conjecture},
language = {eng},
number = {2},
pages = {479-513},
publisher = {Association des Annales de l’institut Fourier},
title = {Receding polar regions of a spherical building and the center conjecture},
url = {http://eudml.org/doc/275482},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Mühlherr, Bernhard
AU - Weiss, Richard M.
TI - Receding polar regions of a spherical building and the center conjecture
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 479
EP - 513
AB - We introduce the notion of a polar region of a spherical building and use some simple observations about polar regions to give elementary proofs of various fundamental properties of root groups. We combine some of these observations with results of Timmesfeld, Balser and Lytchak to give a new proof of the center conjecture for convex chamber subcomplexes of thick spherical buildings.
LA - eng
KW - Spherical building; root group; the center conjecture; spherical buildings; root groups; Tits center conjecture
UR - http://eudml.org/doc/275482
ER -

References

top
  1. Michael Aschbacher, The 27 -dimensional module for E 6 . IV, J. Algebra 131 (1990), 23-39 Zbl0698.20031MR1054997
  2. Andreas Balser, Alexander Lytchak, Centers of convex subsets of buildings, Ann. Global Anal. Geom. 28 (2005), 201-209 Zbl1082.53032MR2180749
  3. Michael Bate, Benjamin Martin, Gerhard Röhrle, On Tits’ centre conjecture for fixed point subcomplexes, C. R. Math. Acad. Sci. Paris 347 (2009), 353-356 Zbl1223.20041MR2537229
  4. A. Borel, J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95-104 Zbl0238.20055MR294349
  5. Martin R. Bridson, André Haefliger, Metric spaces of non-positive curvature, 319 (1999), Springer-Verlag, Berlin Zbl0988.53001MR1744486
  6. Arjeh M. Cohen, Gábor Ivanyos, Root filtration spaces from Lie algebras and abstract root groups, J. Algebra 300 (2006), 433-454 Zbl1109.51006MR2228205
  7. Arjeh M. Cohen, Gábor Ivanyos, Root shadow spaces, European J. Combin. 28 (2007), 1419-1441 Zbl1117.51015MR2320071
  8. Bruce N. Cooperstein, The geometry of root subgroups in exceptional groups. I, Geom. Dedicata 8 (1979), 317-381 Zbl0443.20005MR550374
  9. Hans Cuypers, The geometry of k -transvection groups, J. Algebra 300 (2006), 455-471 Zbl1109.51004MR2228206
  10. Andreas W. M. Dress, Rudolf Scharlau, Gated sets in metric spaces, Aequationes Math. 34 (1987), 112-120 Zbl0696.54022MR915878
  11. George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), 299-316 Zbl0406.14031MR506989
  12. Bernhard Leeb, Carlos Ramos-Cuevas, The center conjecture for spherical buildings of types F 4 and E 6 , Geom. Funct. Anal. 21 (2011), 525-559 Zbl1232.51008MR2810858
  13. Bernhard Mühlherr, Jacques Tits, The center conjecture for non-exceptional buildings, J. Algebra 300 (2006), 687-706 Zbl1101.51004MR2228217
  14. David Mumford, Geometric invariant theory, (1965), Springer-Verlag, Berlin Zbl0147.39304MR214602
  15. Chris Parker, Katrin Tent, Completely reducible subcomplexes of spherical buildings, Arch. Math. (Basel) 97 (2011), 125-128 Zbl1226.51003MR2820573
  16. C. Ramos-Cuevas, The center conjecture for thick spherical buildings, arXiv:0909.2761 Zbl1283.51006
  17. Guy Rousseau, Immeubles des groupes réductifs sur les corps locaux, (1977), U.E.R. Mathématique, Université Paris XI, Orsay Zbl0412.22006MR491992
  18. Guy Rousseau, Immeubles sphériques et théorie des invariants, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), A247-A250 Zbl0375.14013MR506257
  19. Jean-Pierre Serre, Complète réductibilité, Astérisque (2005), Exp. No. 932, viii, 195-217 Zbl1156.20313MR2167207
  20. Koen Struyve, (Non)-completeness of -buildings and fixed point theorems, Groups Geom. Dyn. 5 (2011), 177-188 Zbl1234.51007MR2763784
  21. F. G. Timmesfeld, Subgroups of Lie type groups containing a unipotent radical, J. Algebra 323 (2010), 1408-1431 Zbl1206.20037MR2584962
  22. Franz Georg Timmesfeld, Abstract root subgroups and simple groups of Lie type, 95 (2001), Birkhäuser Verlag, Basel Zbl0984.20019MR1852057
  23. J. Tits, Groupes semi-simples isotropes, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) (1962), 137-147, Librairie Universitaire, Louvain Zbl0154.02601MR148667
  24. J. Tits, Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, Invent. Math. 43 (1977), 283-295 Zbl0399.20037MR460485
  25. Jacques Tits, Buildings of spherical type and finite BN-pairs, (1974), Springer-Verlag, Berlin Zbl0295.20047MR470099
  26. Jacques Tits, Richard M. Weiss, Moufang polygons, (2002), Springer-Verlag, Berlin Zbl1010.20017MR1938841
  27. Richard M. Weiss, The structure of spherical buildings, (2003), Princeton University Press, Princeton, NJ Zbl1061.51011MR2034361
  28. Richard M. Weiss, The structure of affine buildings, 168 (2009), Princeton University Press, Princeton, NJ Zbl1166.51001MR2468338

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.