Analytic aspects of the circulant Hadamard conjecture

Teodor Banica[1]; Ion Nechita[2]; Jean-Marc Schlenker[3]

  • [1] Department of Mathematics, Cergy-Pontoise University, 95000 Cergy-Pontoise, France
  • [2] CNRS, Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, UPS, 31062 Toulouse, France
  • [3] University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

Annales mathématiques Blaise Pascal (2014)

  • Volume: 21, Issue: 1, page 25-59
  • ISSN: 1259-1734

Abstract

top
We investigate the problem of counting the real or complex Hadamard matrices which are circulant, by using analytic methods. Our main observation is the fact that for | q 0 | = ... = | q N - 1 | = 1 the quantity Φ = i + k = j + l q i q k q j q l satisfies Φ N 2 , with equality if and only if q = ( q i ) is the eigenvalue vector of a rescaled circulant complex Hadamard matrix. This suggests three analytic problems, namely: (1) the brute-force minimization of Φ , (2) the study of the critical points of Φ , and (3) the computation of the moments of Φ . We explore here these questions, with some results and conjectures.

How to cite

top

Banica, Teodor, Nechita, Ion, and Schlenker, Jean-Marc. "Analytic aspects of the circulant Hadamard conjecture." Annales mathématiques Blaise Pascal 21.1 (2014): 25-59. <http://eudml.org/doc/275493>.

@article{Banica2014,
abstract = {We investigate the problem of counting the real or complex Hadamard matrices which are circulant, by using analytic methods. Our main observation is the fact that for $|q_0|=\ldots =|q_\{N-1\}|=1$ the quantity $\Phi =\sum _\{i+k=j+l\}\frac\{q_iq_k\}\{q_jq_l\}$ satisfies $\Phi \ge N^2$, with equality if and only if $q=(q_i)$ is the eigenvalue vector of a rescaled circulant complex Hadamard matrix. This suggests three analytic problems, namely: (1) the brute-force minimization of $\Phi $, (2) the study of the critical points of $\Phi $, and (3) the computation of the moments of $\Phi $. We explore here these questions, with some results and conjectures.},
affiliation = {Department of Mathematics, Cergy-Pontoise University, 95000 Cergy-Pontoise, France; CNRS, Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, UPS, 31062 Toulouse, France; University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg},
author = {Banica, Teodor, Nechita, Ion, Schlenker, Jean-Marc},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Circulant Hadamard matrix; Hadamard matrix; circulant Hadamard matrix; complex Hadamard matrix},
language = {eng},
month = {1},
number = {1},
pages = {25-59},
publisher = {Annales mathématiques Blaise Pascal},
title = {Analytic aspects of the circulant Hadamard conjecture},
url = {http://eudml.org/doc/275493},
volume = {21},
year = {2014},
}

TY - JOUR
AU - Banica, Teodor
AU - Nechita, Ion
AU - Schlenker, Jean-Marc
TI - Analytic aspects of the circulant Hadamard conjecture
JO - Annales mathématiques Blaise Pascal
DA - 2014/1//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 1
SP - 25
EP - 59
AB - We investigate the problem of counting the real or complex Hadamard matrices which are circulant, by using analytic methods. Our main observation is the fact that for $|q_0|=\ldots =|q_{N-1}|=1$ the quantity $\Phi =\sum _{i+k=j+l}\frac{q_iq_k}{q_jq_l}$ satisfies $\Phi \ge N^2$, with equality if and only if $q=(q_i)$ is the eigenvalue vector of a rescaled circulant complex Hadamard matrix. This suggests three analytic problems, namely: (1) the brute-force minimization of $\Phi $, (2) the study of the critical points of $\Phi $, and (3) the computation of the moments of $\Phi $. We explore here these questions, with some results and conjectures.
LA - eng
KW - Circulant Hadamard matrix; Hadamard matrix; circulant Hadamard matrix; complex Hadamard matrix
UR - http://eudml.org/doc/275493
ER -

References

top
  1. S. S. Agaian, Hadamard matrices and their applications, 1168 (1985), Springer-Verlag, Berlin Zbl0575.05015MR818740
  2. K. T. Arasu, Warwick de Launey, S. L. Ma, On circulant complex Hadamard matrices, Des. Codes Cryptogr. 25 (2002), 123-142 Zbl1017.05030MR1883962
  3. Jörgen Backelin, Square multiples n give infinitely many cyclic n-roots, Reports/Univ. of Stockholm (1989) 
  4. Teo Banica, Gaurush Hiranandani, Ion Nechita, Jean-Marc Schlenker, Small circulant complex Hadamard matrices of Butson type, arXiv preprint arXiv:1311.5390 (2013) Zbl1321.05026
  5. Teo Banica, Ion Nechita, Jean-Marc Schlenker, Submatrices of Hadamard matrices: complementation results, arXiv preprint arXiv:1311.0764 (2013) Zbl1321.15051MR3194951
  6. Teodor Banica, The Gale-Berlekamp game for complex Hadamard matrices, arXiv preprint arXiv:1310.1810 (2013) Zbl1267.15027MR3028606
  7. Teodor Banica, Benoît Collins, Jean-Marc Schlenker, On orthogonal matrices maximizing the 1-norm, Indiana Univ. Math. J. 59 (2010), 839-856 Zbl1228.15013MR2779063
  8. Teodor Banica, Benoit Collins, Jean-Marc Schlenker, On polynomial integrals over the orthogonal group, J. Combin. Theory Ser. A 118 (2011), 778-795 Zbl1231.05282MR2745424
  9. Teodor Banica, Ion Nechita, Almost Hadamard matrices: the case of arbitrary exponents, Discrete Appl. Math. 161 (2013), 2367-2379 Zbl1285.05023MR3101716
  10. Teodor Banica, Ion Nechita, Karol Życzkowski, Almost Hadamard matrices: general theory and examples, Open Syst. Inf. Dyn. 19 (2012) Zbl1263.15030MR3010913
  11. Ingemar Bengtsson, Wojciech Bruzda, Åsa Ericsson, Jan-Åke Larsson, Wojciech Tadej, Karol Życzkowski, Mutually unbiased bases and Hadamard matrices of order six, J. Math. Phys. 48 (2007) Zbl1144.81314MR2326331
  12. Göran Björck, Functions of modulus 1 on Z n whose Fourier transforms have constant modulus, and “cyclic n -roots”, Recent advances in Fourier analysis and its applications (Il Ciocco, 1989) 315 (1990), 131-140, Kluwer Acad. Publ., Dordrecht Zbl0726.43004MR1081347
  13. Göran Björck, Ralf Fröberg, A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic n -roots, J. Symbolic Comput. 12 (1991), 329-336 Zbl0751.12001MR1128248
  14. Goran Bjorck, Uffe Haagerup, All cyclic p-roots of index 3, found by symmetry-preserving calculations, arXiv preprint arXiv:0803.2506 (2008) 
  15. A. T. Butson, Generalized Hadamard matrices, Proc. Amer. Math. Soc. 13 (1962), 894-898 Zbl0109.24605MR142557
  16. Benoît Collins, Piotr Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), 773-795 Zbl1108.60004MR2217291
  17. R. Craigen, H. Kharaghani, On the nonexistence of Hermitian circulant complex Hadamard matrices, Australas. J. Combin. 7 (1993), 225-227 Zbl0778.05025MR1211281
  18. Jean-Charles Faugère, Finding all the solutions of Cyclic 9 using Gröbner basis techniques, Computer mathematics (Matsuyama, 2001) 9 (2001), 1-12, World Sci. Publ., River Edge, NJ Zbl1030.68112MR1877437
  19. John Gilbert, Ziemowit Rzeszotnik, The norm of the Fourier transform on finite abelian groups, Ann. Inst. Fourier (Grenoble) 60 (2010), 1317-1346 Zbl1202.42065MR2722243
  20. T. Gorin, Integrals of monomials over the orthogonal group, J. Math. Phys. 43 (2002), 3342-3351 Zbl1060.22005MR1902484
  21. D. Goyeneche, Mutually unbiased triplets from non-affine families of complex Hadamard matrices in dimension 6, J. Phys. A 46 (2013) Zbl1264.81074MR3030161
  22. Uffe Haagerup, Orthogonal maximal abelian * -subalgebras of the n × n matrices and cyclic n -roots, Operator algebras and quantum field theory (Rome, 1996) (1997), 296-322, Int. Press, Cambridge, MA Zbl0914.46045MR1491124
  23. Uffe Haagerup, Cyclic p-roots of prime lengths p and related complex Hadamard matrices, arXiv preprint arXiv:0803.2629 (2008) MR2524079
  24. Pierre de la Harpe, Vaughan Jones, Paires de sous-algèbres semi-simples et graphes fortement réguliers, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 147-150 Zbl0707.46039MR1065880
  25. K. J. Horadam, Hadamard matrices and their applications, (2007), Princeton University Press, Princeton, NJ Zbl1145.05014MR2265694
  26. Jonathan Jedwab, Sheelagh Lloyd, A note on the nonexistence of Barker sequences, Des. Codes Cryptogr. 2 (1992), 93-97 Zbl0762.94009MR1157481
  27. V. Jones, V. S. Sunder, Introduction to subfactors, 234 (1997), Cambridge University Press, Cambridge Zbl0903.46062MR1473221
  28. T. Y. Lam, K. H. Leung, On vanishing sums of roots of unity, J. Algebra 224 (2000), 91-109 Zbl1099.11510MR1736695
  29. Warwick de Launey, On the nonexistence of generalised weighing matrices, Ars Combin. 17 (1984), 117-132 Zbl0538.05017MR746179
  30. Warwick de Launey, David A. Levin, A Fourier-analytic approach to counting partial Hadamard matrices, Cryptogr. Commun. 2 (2010), 307-334 Zbl1225.05056MR2719847
  31. Ka Hin Leung, Bernhard Schmidt, New restrictions on possible orders of circulant Hadamard matrices, Des. Codes Cryptogr. 64 (2012), 143-151 Zbl1242.15027MR2914407
  32. Georg Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Math. Ann. 84 (1921), 149-160 Zbl48.0603.01MR1512028
  33. Sorin Popa, Orthogonal pairs of * -subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), 253-268 Zbl0521.46048MR703810
  34. T. Prosen, T. H. Seligman, H. A. Weidenmüller, Integration over matrix spaces with unique invariant measures, J. Math. Phys. 43 (2002), 5135-5144 Zbl1060.81033MR1927357
  35. Herbert John Ryser, Combinatorial mathematics, (1963), Published by The Mathematical Association of America Zbl0112.24806MR150048
  36. Bernhard Schmidt, Cyclotomic integers and finite geometry, J. Amer. Math. Soc. 12 (1999), 929-952 Zbl0939.05016MR1671453
  37. Ferenc Szöllősi, Exotic complex Hadamard matrices and their equivalence, Cryptogr. Commun. 2 (2010), 187-198 Zbl1228.05097MR2719838
  38. Ferenc Szöllősi, A two-parameter family of complex Hadamard matrices of order 6 induced by hypocycloids, Proc. Amer. Math. Soc. 138 (2010), 921-928 Zbl1189.15035MR2566558
  39. Wojciech Tadej, Karol Życzkowski, A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn. 13 (2006), 133-177 Zbl1105.15020MR2244963
  40. Terence Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), 251-258 Zbl1092.42014MR2067470
  41. Terence Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12 (2005), 121-127 Zbl1080.42002MR2122735
  42. Richard J. Turyn, Character sums and difference sets, Pacific J. Math. 15 (1965), 319-346 Zbl0135.05403MR179098
  43. R. F. Werner, All teleportation and dense coding schemes, J. Phys. A 34 (2001), 7081-7094 Zbl1024.81006MR1863141
  44. Arne Winterhof, On the non-existence of generalized Hadamard matrices, J. Statist. Plann. Inference 84 (2000), 337-342 Zbl0958.05014MR1747512

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.