Analytic aspects of the circulant Hadamard conjecture
Teodor Banica[1]; Ion Nechita[2]; Jean-Marc Schlenker[3]
- [1] Department of Mathematics, Cergy-Pontoise University, 95000 Cergy-Pontoise, France
- [2] CNRS, Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, UPS, 31062 Toulouse, France
- [3] University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
Annales mathématiques Blaise Pascal (2014)
- Volume: 21, Issue: 1, page 25-59
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topBanica, Teodor, Nechita, Ion, and Schlenker, Jean-Marc. "Analytic aspects of the circulant Hadamard conjecture." Annales mathématiques Blaise Pascal 21.1 (2014): 25-59. <http://eudml.org/doc/275493>.
@article{Banica2014,
abstract = {We investigate the problem of counting the real or complex Hadamard matrices which are circulant, by using analytic methods. Our main observation is the fact that for $|q_0|=\ldots =|q_\{N-1\}|=1$ the quantity $\Phi =\sum _\{i+k=j+l\}\frac\{q_iq_k\}\{q_jq_l\}$ satisfies $\Phi \ge N^2$, with equality if and only if $q=(q_i)$ is the eigenvalue vector of a rescaled circulant complex Hadamard matrix. This suggests three analytic problems, namely: (1) the brute-force minimization of $\Phi $, (2) the study of the critical points of $\Phi $, and (3) the computation of the moments of $\Phi $. We explore here these questions, with some results and conjectures.},
affiliation = {Department of Mathematics, Cergy-Pontoise University, 95000 Cergy-Pontoise, France; CNRS, Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, UPS, 31062 Toulouse, France; University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg},
author = {Banica, Teodor, Nechita, Ion, Schlenker, Jean-Marc},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Circulant Hadamard matrix; Hadamard matrix; circulant Hadamard matrix; complex Hadamard matrix},
language = {eng},
month = {1},
number = {1},
pages = {25-59},
publisher = {Annales mathématiques Blaise Pascal},
title = {Analytic aspects of the circulant Hadamard conjecture},
url = {http://eudml.org/doc/275493},
volume = {21},
year = {2014},
}
TY - JOUR
AU - Banica, Teodor
AU - Nechita, Ion
AU - Schlenker, Jean-Marc
TI - Analytic aspects of the circulant Hadamard conjecture
JO - Annales mathématiques Blaise Pascal
DA - 2014/1//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 1
SP - 25
EP - 59
AB - We investigate the problem of counting the real or complex Hadamard matrices which are circulant, by using analytic methods. Our main observation is the fact that for $|q_0|=\ldots =|q_{N-1}|=1$ the quantity $\Phi =\sum _{i+k=j+l}\frac{q_iq_k}{q_jq_l}$ satisfies $\Phi \ge N^2$, with equality if and only if $q=(q_i)$ is the eigenvalue vector of a rescaled circulant complex Hadamard matrix. This suggests three analytic problems, namely: (1) the brute-force minimization of $\Phi $, (2) the study of the critical points of $\Phi $, and (3) the computation of the moments of $\Phi $. We explore here these questions, with some results and conjectures.
LA - eng
KW - Circulant Hadamard matrix; Hadamard matrix; circulant Hadamard matrix; complex Hadamard matrix
UR - http://eudml.org/doc/275493
ER -
References
top- S. S. Agaian, Hadamard matrices and their applications, 1168 (1985), Springer-Verlag, Berlin Zbl0575.05015MR818740
- K. T. Arasu, Warwick de Launey, S. L. Ma, On circulant complex Hadamard matrices, Des. Codes Cryptogr. 25 (2002), 123-142 Zbl1017.05030MR1883962
- Jörgen Backelin, Square multiples n give infinitely many cyclic n-roots, Reports/Univ. of Stockholm (1989)
- Teo Banica, Gaurush Hiranandani, Ion Nechita, Jean-Marc Schlenker, Small circulant complex Hadamard matrices of Butson type, arXiv preprint arXiv:1311.5390 (2013) Zbl1321.05026
- Teo Banica, Ion Nechita, Jean-Marc Schlenker, Submatrices of Hadamard matrices: complementation results, arXiv preprint arXiv:1311.0764 (2013) Zbl1321.15051MR3194951
- Teodor Banica, The Gale-Berlekamp game for complex Hadamard matrices, arXiv preprint arXiv:1310.1810 (2013) Zbl1267.15027MR3028606
- Teodor Banica, Benoît Collins, Jean-Marc Schlenker, On orthogonal matrices maximizing the 1-norm, Indiana Univ. Math. J. 59 (2010), 839-856 Zbl1228.15013MR2779063
- Teodor Banica, Benoit Collins, Jean-Marc Schlenker, On polynomial integrals over the orthogonal group, J. Combin. Theory Ser. A 118 (2011), 778-795 Zbl1231.05282MR2745424
- Teodor Banica, Ion Nechita, Almost Hadamard matrices: the case of arbitrary exponents, Discrete Appl. Math. 161 (2013), 2367-2379 Zbl1285.05023MR3101716
- Teodor Banica, Ion Nechita, Karol Życzkowski, Almost Hadamard matrices: general theory and examples, Open Syst. Inf. Dyn. 19 (2012) Zbl1263.15030MR3010913
- Ingemar Bengtsson, Wojciech Bruzda, Åsa Ericsson, Jan-Åke Larsson, Wojciech Tadej, Karol Życzkowski, Mutually unbiased bases and Hadamard matrices of order six, J. Math. Phys. 48 (2007) Zbl1144.81314MR2326331
- Göran Björck, Functions of modulus on whose Fourier transforms have constant modulus, and “cyclic -roots”, Recent advances in Fourier analysis and its applications (Il Ciocco, 1989) 315 (1990), 131-140, Kluwer Acad. Publ., Dordrecht Zbl0726.43004MR1081347
- Göran Björck, Ralf Fröberg, A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic -roots, J. Symbolic Comput. 12 (1991), 329-336 Zbl0751.12001MR1128248
- Goran Bjorck, Uffe Haagerup, All cyclic p-roots of index 3, found by symmetry-preserving calculations, arXiv preprint arXiv:0803.2506 (2008)
- A. T. Butson, Generalized Hadamard matrices, Proc. Amer. Math. Soc. 13 (1962), 894-898 Zbl0109.24605MR142557
- Benoît Collins, Piotr Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), 773-795 Zbl1108.60004MR2217291
- R. Craigen, H. Kharaghani, On the nonexistence of Hermitian circulant complex Hadamard matrices, Australas. J. Combin. 7 (1993), 225-227 Zbl0778.05025MR1211281
- Jean-Charles Faugère, Finding all the solutions of Cyclic using Gröbner basis techniques, Computer mathematics (Matsuyama, 2001) 9 (2001), 1-12, World Sci. Publ., River Edge, NJ Zbl1030.68112MR1877437
- John Gilbert, Ziemowit Rzeszotnik, The norm of the Fourier transform on finite abelian groups, Ann. Inst. Fourier (Grenoble) 60 (2010), 1317-1346 Zbl1202.42065MR2722243
- T. Gorin, Integrals of monomials over the orthogonal group, J. Math. Phys. 43 (2002), 3342-3351 Zbl1060.22005MR1902484
- D. Goyeneche, Mutually unbiased triplets from non-affine families of complex Hadamard matrices in dimension 6, J. Phys. A 46 (2013) Zbl1264.81074MR3030161
- Uffe Haagerup, Orthogonal maximal abelian -subalgebras of the matrices and cyclic -roots, Operator algebras and quantum field theory (Rome, 1996) (1997), 296-322, Int. Press, Cambridge, MA Zbl0914.46045MR1491124
- Uffe Haagerup, Cyclic p-roots of prime lengths p and related complex Hadamard matrices, arXiv preprint arXiv:0803.2629 (2008) MR2524079
- Pierre de la Harpe, Vaughan Jones, Paires de sous-algèbres semi-simples et graphes fortement réguliers, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 147-150 Zbl0707.46039MR1065880
- K. J. Horadam, Hadamard matrices and their applications, (2007), Princeton University Press, Princeton, NJ Zbl1145.05014MR2265694
- Jonathan Jedwab, Sheelagh Lloyd, A note on the nonexistence of Barker sequences, Des. Codes Cryptogr. 2 (1992), 93-97 Zbl0762.94009MR1157481
- V. Jones, V. S. Sunder, Introduction to subfactors, 234 (1997), Cambridge University Press, Cambridge Zbl0903.46062MR1473221
- T. Y. Lam, K. H. Leung, On vanishing sums of roots of unity, J. Algebra 224 (2000), 91-109 Zbl1099.11510MR1736695
- Warwick de Launey, On the nonexistence of generalised weighing matrices, Ars Combin. 17 (1984), 117-132 Zbl0538.05017MR746179
- Warwick de Launey, David A. Levin, A Fourier-analytic approach to counting partial Hadamard matrices, Cryptogr. Commun. 2 (2010), 307-334 Zbl1225.05056MR2719847
- Ka Hin Leung, Bernhard Schmidt, New restrictions on possible orders of circulant Hadamard matrices, Des. Codes Cryptogr. 64 (2012), 143-151 Zbl1242.15027MR2914407
- Georg Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Math. Ann. 84 (1921), 149-160 Zbl48.0603.01MR1512028
- Sorin Popa, Orthogonal pairs of -subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), 253-268 Zbl0521.46048MR703810
- T. Prosen, T. H. Seligman, H. A. Weidenmüller, Integration over matrix spaces with unique invariant measures, J. Math. Phys. 43 (2002), 5135-5144 Zbl1060.81033MR1927357
- Herbert John Ryser, Combinatorial mathematics, (1963), Published by The Mathematical Association of America Zbl0112.24806MR150048
- Bernhard Schmidt, Cyclotomic integers and finite geometry, J. Amer. Math. Soc. 12 (1999), 929-952 Zbl0939.05016MR1671453
- Ferenc Szöllősi, Exotic complex Hadamard matrices and their equivalence, Cryptogr. Commun. 2 (2010), 187-198 Zbl1228.05097MR2719838
- Ferenc Szöllősi, A two-parameter family of complex Hadamard matrices of order 6 induced by hypocycloids, Proc. Amer. Math. Soc. 138 (2010), 921-928 Zbl1189.15035MR2566558
- Wojciech Tadej, Karol Życzkowski, A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn. 13 (2006), 133-177 Zbl1105.15020MR2244963
- Terence Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), 251-258 Zbl1092.42014MR2067470
- Terence Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12 (2005), 121-127 Zbl1080.42002MR2122735
- Richard J. Turyn, Character sums and difference sets, Pacific J. Math. 15 (1965), 319-346 Zbl0135.05403MR179098
- R. F. Werner, All teleportation and dense coding schemes, J. Phys. A 34 (2001), 7081-7094 Zbl1024.81006MR1863141
- Arne Winterhof, On the non-existence of generalized Hadamard matrices, J. Statist. Plann. Inference 84 (2000), 337-342 Zbl0958.05014MR1747512
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.