The norm of the Fourier transform on finite abelian groups
John Gilbert[1]; Ziemowit Rzeszotnik[2]
- [1] University of Texas Department of Mathematics Austin, TX 78712–1082 (USA)
- [2] Wrocław University Mathematical Institute Pl. Grunwaldzki 2/4 50-384 Wrocław (Poland)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 4, page 1317-1346
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGilbert, John, and Rzeszotnik, Ziemowit. "The norm of the Fourier transform on finite abelian groups." Annales de l’institut Fourier 60.4 (2010): 1317-1346. <http://eudml.org/doc/116305>.
@article{Gilbert2010,
abstract = {For $1\le p,q\le \infty $ we calculate the norm of the Fourier transform from the $L^p$ space on a finite abelian group to the $L^q$ space on the dual group.},
affiliation = {University of Texas Department of Mathematics Austin, TX 78712–1082 (USA); Wrocław University Mathematical Institute Pl. Grunwaldzki 2/4 50-384 Wrocław (Poland)},
author = {Gilbert, John, Rzeszotnik, Ziemowit},
journal = {Annales de l’institut Fourier},
keywords = {Fourier transform; finite abelian groups; wave packets; biunimodular functions},
language = {eng},
number = {4},
pages = {1317-1346},
publisher = {Association des Annales de l’institut Fourier},
title = {The norm of the Fourier transform on finite abelian groups},
url = {http://eudml.org/doc/116305},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Gilbert, John
AU - Rzeszotnik, Ziemowit
TI - The norm of the Fourier transform on finite abelian groups
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1317
EP - 1346
AB - For $1\le p,q\le \infty $ we calculate the norm of the Fourier transform from the $L^p$ space on a finite abelian group to the $L^q$ space on the dual group.
LA - eng
KW - Fourier transform; finite abelian groups; wave packets; biunimodular functions
UR - http://eudml.org/doc/116305
ER -
References
top- C. M. Adams, Constructing symmetric ciphers using the CAST design procedure, Des. Codes Cryptography 12 (1997), 283-316 Zbl0880.94011MR1473036
- C. M. Adams, S. E. Tavares, Generating bent sequences, Discrete Appl. Math. 39 (1992), 155-159 Zbl0767.94004MR1184686
- S. Agievich, On the representation of bent functions by bent rectangles, Probabilistic Methods in Discrete Mathematics: Proceedings of the Fifth International Petrozavodsk Conference (2002), 121-135, Utrecht, Boston: VSP
- K. I. Babenko, An inequality in the theory of Fourier integrals, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 531-542 Zbl0122.34404MR138939
- W. Beckner, Inequalities in Fourier analysis, Ann. Math. (2) 102 (1975), 159-182 Zbl0338.42017MR385456
- G. Björck, Functions of modulus 1 on whose Fourier transforms have constant modulus, and “cyclic n-roots”, Recent advances in Fourier analysis and its applications, Proc. NATO/ASI, Il Ciocco/Italy 1989, NATO ASI Ser., Ser. C 315 (1990) Zbl0726.43004MR1081347
- G. Björck, R. Fröberg, A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic -roots, J. Symb. Comput. 12 (1991), 329-336 Zbl0751.12001MR1128248
- G. Björck, B. Saffari, New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries, C. R. Acad. Sci., Paris, Sér. I 320 (1995), 319-324 Zbl0846.11016MR1320378
- J. S. Byrnes, On polynomials with coefficients of modulus one, Bull. Lond. Math. Soc. 9 (1997), 171-176 Zbl0364.30004MR486435
- C. Carlet, Two new classes of bent functions, Helleseth, Tor (ed.), Advances in cryptology - EUROCRYPT ’93. Lect. Notes Comput. Sci. 765, Springer, Berlin (1994) Zbl0951.94542MR1290331
- P. G. Casazza, M. Fickus, Chirps on finite cyclic groups, Proc. SPIE 5914 (2005), 175-180
- D. K. Chang, Binary bent sequences of order 64, Util. Math. 52 (1997), 141-151 Zbl0926.94019MR1605743
- R. R. Coifman, Y. Meyer, M. V. Wickerhauser, Wavelet analysis and signal processing, Wavelets and their applications (1992), 153-178, RuskaiM. B.M. B., Boston, MA Zbl0792.94004MR1187341
- R. R. Coifman, M. V. Wickerhauser, Entropy-based algorithms for best basis selection, IEEE Trans. Inf. Theory 38 (1992), 713-718 Zbl0849.94005
- J. F. Dillon, Elementary Hadamard difference sets, Proc. 6th Southeast. Conf. Comb., Graph Theor., and Comput.; Boca Raton, Fl (1975) Zbl0346.05003MR409221
- H. Dobbertin, G. Leander, Cryptographer’s Toolkit for Construction of -Bit Bent Functions, Cryptology ePrint Archive, Report 2005/089 (2005) Zbl1145.94439
- D. L. Donoho, P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1989), 906-931 Zbl0689.42001MR997928
- C. Fefferman, Pointwise convergence of Fourier series, Ann. Math. (2) 98 (1973), 551-571 Zbl0268.42009MR340926
- H. G. Feichtinger, M. Hazewinkel, N. Kaiblinger, E. Matusiak, M. Neuhauser, Metaplectic operators on , preprint Zbl1142.22007
- U. Haagerup, Orthogonal maximal abelian -subalgebras of the matrices and cyclic -roots., Doplicher, S. (ed.) et al., Operator algebras and quantum field theory. Accademia Nazionale dei Lincei, Roma, Italy. Cambridge, MA: International Press (1997) Zbl0914.46045MR1491124
- G. H. Hardy, J. E. Littlewood, Some new properties of Fourier constants, Math. Ann. 97 (1927), 159-209 Zbl52.0267.01MR1512359
- C. Herley, Z. Xiong, K. Ramchandran, M. T. Orchard, Joint space-frequency segmentation using balanced wavelet packet trees for least-cost image representation, IEEE Trans. on Image Proc. 6 (1997), 1213-1230
- E. Hewitt, I. Hirschman, A maximum problem in harmonic analysis, Am. J. Math. 76 (1954), 839-852 Zbl0056.10504MR65034
- E. Hewitt, K. A. Ross, Abstract harmonic analysis., 2 (1970), Berlin-Heidelberg-New York: Springer-Verlag VIII Zbl0115.10603MR262773
- Y. Huang, I. Pollak, C. A. Bouman, Image Compression with Multitree Tilings, Proc. ICASSP-2005, Philadelphia, PA. (March 2005)
- M. Lacey, C. Thiele, estimates on the bilinear Hilbert transform for , Ann. Math. (2) 146 (1997), 693-724 Zbl0914.46034MR1491450
- M. Lacey, C. Thiele, On Calderón’s conjecture, Ann. Math. (2) 149 (1999), 475-496 Zbl0934.42012MR1689336
- Ka Hin Leung, Siu Lun Ma, B. Schmidt, Nonexistence of abelian difference sets: Lander’s conjecture for prime power orders, Trans. Am. Math. Soc. 356 (2004), 4343-4358 Zbl1043.05025MR2067122
- T. Y. Li, Xing Li, Finding mixed cells in the mixed volume computation, Found. Comput. Math. 1 (2001), 161-181 Zbl1012.65019MR1830034
- E. H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), 179-208 Zbl0726.42005MR1069246
- J. E. Littlewood, On the mean values of certain trigonometrical polynomials. II, Ill. J. Math. 6 (1962), 1-39 Zbl0108.05802MR141935
- F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, 16 (1977), North-Holland Mathematical Library, Amsterdam - New York - Oxford Zbl0369.94008
- E. Matusiak, M. Özaydin, T. Przebinda, The Donoho–Stark uncertainty principle for a finite abelian group, Acta Math. Univ. Comen. New Ser. 73 (2004), 155-160 Zbl1100.43003MR2122203
- B. Preneel, W. van Leekwijck, L. van Linden, R. Govaerts, J. Vandewalle, Propagation characteristics of Boolean functions, Advances in Cryptology, Proc. Workshop, EUROCRYPT ’90, Lect. Notes Comput. Sci. 473 (1991) Zbl0764.94024MR1102479
- M. S. Richman, T. W. Parks, R. G. Shenoy, Discrete-time, discrete-frequency, time-frequency analysis, IEEE Trans. Signal Process. 46 (1998), 1517-1527 Zbl1010.94526
- O. S. Rothaus, On “bent” functions., J. Comb. Theory, Ser. A 20 (1976), 300-305 Zbl0336.12012MR403988
- H. J. Ryser, Combinatorial mathematics, (1963), John Wiley and Sons, New York Zbl0112.24806MR150048
- B. Saffari, Some polynomial extremal problems which emerged in the twentieth century, Byrnes, James S. (ed.), Twentieth century harmonic analysis–a celebration. Proceedings of the NATO Advanced Study Institute, Il Ciocco, Italy, July 2-15, 2000. Dordrecht: Kluwer Academic Publishers. NATO Sci. Ser. II, Math. Phys. Chem. 33 (2001) Zbl0996.42001MR1858787
- B. Schmidt, Cyclotomic integers and finite geometry, J. Am. Math. Soc. 12 (1999), 929-952 Zbl0939.05016MR1671453
- B. Schmidt, Towards Ryser’s conjecture, Casacuberta, Carles (ed.) et al., 3rd European congress of mathematics (ECM), Barcelona, Spain, July 10-14, 2000. Volume I. Basel: Birkhäuser. Prog. Math. 201 (2001) Zbl1030.05018MR1905341
- A. Takeda, M. Kojima, K. Fujisawa, Enumeration of all solutions of a combinatorial linear inequality system arising from the polyhedral homotopy continuation method, J. Oper. Res. Soc. Japan 45 (2002), 64-82 Zbl1031.65074MR1898623
- T. Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12 (2005), 121-127 Zbl1080.42002MR2122735
- C. Thiele, L. F. Villemoes, A fast algorithm for adapted time-frequency tilings, Appl. Comput. Harmon. Anal. 3 (1996), 91-99 Zbl0857.65148MR1385046
- R. J. Turyn, Character sums and difference sets, Pac. J. Math. 15 (1965), 319-346 Zbl0135.05403MR179098
- X. G. Xia, Discrete chirp-Fourier transform and its application in chirp rate estimation, IEEE Trans. on Signal Processing 48(11) (2000), 3122-3133 Zbl0979.94024MR1791082
- R. Yarlagadda, J. E. Hershey, Analysis and synthesis of bent sequences, Proc. IEE 136, Pt. E. (1989), 112-123
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.