Gauss-Manin stratification and stratified fundamental group schemes

Hô Hai Phùng[1]

  • [1] Institute of Mathematics, Hanoi

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 6, page 2267-2285
  • ISSN: 0373-0956

Abstract

top
We define the zero-th Gauss-Manin stratification of a stratified bundle with respect to a smooth morphism and use it to study the homotopy sequence of stratified fundamental group schemes.

How to cite

top

Phùng, Hô Hai. "Gauss-Manin stratification and stratified fundamental group schemes." Annales de l’institut Fourier 63.6 (2013): 2267-2285. <http://eudml.org/doc/275506>.

@article{Phùng2013,
abstract = {We define the zero-th Gauss-Manin stratification of a stratified bundle with respect to a smooth morphism and use it to study the homotopy sequence of stratified fundamental group schemes.},
affiliation = {Institute of Mathematics, Hanoi},
author = {Phùng, Hô Hai},
journal = {Annales de l’institut Fourier},
keywords = {Stratified bundle; Gauss-Manin stratification; homotopy sequence; stratified bundle},
language = {eng},
number = {6},
pages = {2267-2285},
publisher = {Association des Annales de l’institut Fourier},
title = {Gauss-Manin stratification and stratified fundamental group schemes},
url = {http://eudml.org/doc/275506},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Phùng, Hô Hai
TI - Gauss-Manin stratification and stratified fundamental group schemes
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2267
EP - 2285
AB - We define the zero-th Gauss-Manin stratification of a stratified bundle with respect to a smooth morphism and use it to study the homotopy sequence of stratified fundamental group schemes.
LA - eng
KW - Stratified bundle; Gauss-Manin stratification; homotopy sequence; stratified bundle
UR - http://eudml.org/doc/275506
ER -

References

top
  1. P. Berthelot, A. Ogus, Notes on crystalline cohomology, (1978), Princeton Univ. Press Zbl0383.14010MR491705
  2. P. Deligne, J. S. Milne, Tannakian Categories, Hodge Cycles, Motives, and Shimura Varieties 900 (1981), 101-228, Springer-Verlag Zbl0477.14004
  3. H.and Esnault, V. Mehta, Simply connected projective manifolds incharacteristic p &gt; 0 have no nontrivial stratified bundles, Inventiones Mathematicae 181 (2010), 449-465 Zbl1203.14029MR2660450
  4. P. H. Esnault, The Gauss-Manin connection and Tannaka duality, Int. Math. Res. Not., Art. ID 93978 (2006), 1-35 Zbl1105.14012MR2211153
  5. P. H. Esnault, X. Sun, On Nori’s Fundamental Group Scheme, Progress in Mathematics 265 (2007), 377-398 Zbl1137.14035MR2402410
  6. D. Gieseker, Flat vector bundles, Annali della Scuola Normale Superiore di Pisa (1975), 1-31 Zbl0322.14009MR382271
  7. A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique III, (EGA 3), 17 (1963), Publication Math. IHES Zbl0203.23301
  8. A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique IV (EGA 4), 32 (1967), Publication Math. IHES 
  9. R. Hartshorne, Algebraic geometry, (1977), Springer Zbl0531.14001MR463157
  10. N. Katz, Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publ. Math. IHES 39 (1970), 175-232 Zbl0221.14007MR291177
  11. A. Ogus, Cohomology of the infinitesimal site, Annales scientifiques E.N.S. 8 (1975), 295-318 Zbl0337.14018MR422280
  12. J. dos Santos, Fundamental group schemes for stratified sheaves, Journal of Algebra 317 (2007), 691-713 Zbl1130.14032MR2362937
  13. J. dos Santos, The behaviour of the differential Galois group on the generic and special fibres: A Tannakian approach, J. reine angew. Math. 637 (2009), 63-98 Zbl1242.12005MR2599082

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.