Gauss-Manin stratification and stratified fundamental group schemes
Hô Hai Phùng[1]
- [1] Institute of Mathematics, Hanoi
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 6, page 2267-2285
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPhùng, Hô Hai. "Gauss-Manin stratification and stratified fundamental group schemes." Annales de l’institut Fourier 63.6 (2013): 2267-2285. <http://eudml.org/doc/275506>.
@article{Phùng2013,
abstract = {We define the zero-th Gauss-Manin stratification of a stratified bundle with respect to a smooth morphism and use it to study the homotopy sequence of stratified fundamental group schemes.},
affiliation = {Institute of Mathematics, Hanoi},
author = {Phùng, Hô Hai},
journal = {Annales de l’institut Fourier},
keywords = {Stratified bundle; Gauss-Manin stratification; homotopy sequence; stratified bundle},
language = {eng},
number = {6},
pages = {2267-2285},
publisher = {Association des Annales de l’institut Fourier},
title = {Gauss-Manin stratification and stratified fundamental group schemes},
url = {http://eudml.org/doc/275506},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Phùng, Hô Hai
TI - Gauss-Manin stratification and stratified fundamental group schemes
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2267
EP - 2285
AB - We define the zero-th Gauss-Manin stratification of a stratified bundle with respect to a smooth morphism and use it to study the homotopy sequence of stratified fundamental group schemes.
LA - eng
KW - Stratified bundle; Gauss-Manin stratification; homotopy sequence; stratified bundle
UR - http://eudml.org/doc/275506
ER -
References
top- P. Berthelot, A. Ogus, Notes on crystalline cohomology, (1978), Princeton Univ. Press Zbl0383.14010MR491705
- P. Deligne, J. S. Milne, Tannakian Categories, Hodge Cycles, Motives, and Shimura Varieties 900 (1981), 101-228, Springer-Verlag Zbl0477.14004
- H.and Esnault, V. Mehta, Simply connected projective manifolds incharacteristic have no nontrivial stratified bundles, Inventiones Mathematicae 181 (2010), 449-465 Zbl1203.14029MR2660450
- P. H. Esnault, The Gauss-Manin connection and Tannaka duality, Int. Math. Res. Not., Art. ID 93978 (2006), 1-35 Zbl1105.14012MR2211153
- P. H. Esnault, X. Sun, On Nori’s Fundamental Group Scheme, Progress in Mathematics 265 (2007), 377-398 Zbl1137.14035MR2402410
- D. Gieseker, Flat vector bundles, Annali della Scuola Normale Superiore di Pisa (1975), 1-31 Zbl0322.14009MR382271
- A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique III, (EGA 3), 17 (1963), Publication Math. IHES Zbl0203.23301
- A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique IV (EGA 4), 32 (1967), Publication Math. IHES
- R. Hartshorne, Algebraic geometry, (1977), Springer Zbl0531.14001MR463157
- N. Katz, Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publ. Math. IHES 39 (1970), 175-232 Zbl0221.14007MR291177
- A. Ogus, Cohomology of the infinitesimal site, Annales scientifiques E.N.S. 8 (1975), 295-318 Zbl0337.14018MR422280
- J. dos Santos, Fundamental group schemes for stratified sheaves, Journal of Algebra 317 (2007), 691-713 Zbl1130.14032MR2362937
- J. dos Santos, The behaviour of the differential Galois group on the generic and special fibres: A Tannakian approach, J. reine angew. Math. 637 (2009), 63-98 Zbl1242.12005MR2599082
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.