Stability under deformations of Hermite-Einstein almost Kähler metrics

Mehdi Lejmi[1]

  • [1] Université Libre de Bruxelles CP218 Département de Mathématiques Boulevard du Triomphe Bruxelles 1050, (Belgique)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 6, page 2251-2263
  • ISSN: 0373-0956

Abstract

top
On a 4 -dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.

How to cite

top

Lejmi, Mehdi. "Stability under deformations of Hermite-Einstein almost Kähler metrics." Annales de l’institut Fourier 64.6 (2014): 2251-2263. <http://eudml.org/doc/275507>.

@article{Lejmi2014,
abstract = {On a $4$-dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.},
affiliation = {Université Libre de Bruxelles CP218 Département de Mathématiques Boulevard du Triomphe Bruxelles 1050, (Belgique)},
author = {Lejmi, Mehdi},
journal = {Annales de l’institut Fourier},
keywords = {Almost-Kähler geometry; extremal almost-Kähler metrics; constant Hermitian scalar curvature almost-Kähler metrics; almost-Kähler geometry},
language = {eng},
number = {6},
pages = {2251-2263},
publisher = {Association des Annales de l’institut Fourier},
title = {Stability under deformations of Hermite-Einstein almost Kähler metrics},
url = {http://eudml.org/doc/275507},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Lejmi, Mehdi
TI - Stability under deformations of Hermite-Einstein almost Kähler metrics
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2251
EP - 2263
AB - On a $4$-dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.
LA - eng
KW - Almost-Kähler geometry; extremal almost-Kähler metrics; constant Hermitian scalar curvature almost-Kähler metrics; almost-Kähler geometry
UR - http://eudml.org/doc/275507
ER -

References

top
  1. Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, Christina W. Tønnesen-Friedman, Extremal Kähler metrics on projective bundles over a curve, Adv. Math. 227 (2011), 2385-2424 Zbl1232.32011MR2807093
  2. Vestislav Apostolov, Tedi Drăghici, The curvature and the integrability of almost-Kähler manifolds: a survey, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) 35 (2003), 25-53, Amer. Math. Soc., Providence, RI Zbl1050.53031MR1969266
  3. Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry 102 (1982), 259-290, Princeton Univ. Press, Princeton, N.J. Zbl0574.58006MR645743
  4. Pierre Deligne, Phillip Griffiths, John Morgan, Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274 Zbl0312.55011MR382702
  5. S. K. Donaldson, Remarks on gauge theory, complex geometry and 4 -manifold topology, Fields Medallists’ lectures 5 (1997), 384-403, World Sci. Publ., River Edge, NJ MR1622931
  6. Tedi Drăghici, Lecture notes and private communications Zbl0978.53117
  7. Tedi Drăghici, Tian-Jun Li, Weiyi Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. IMRN (2010), 1-17 Zbl1190.32021MR2576281
  8. Akira Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics [translation of Sûgaku 42 (1990), no. 3, 231–243; MR1073369 (92b:32032)], Sugaku Expositions 5 (1992), 173-191 Zbl0796.32009MR1073369
  9. Akira Fujiki, Georg Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics, Publ. Res. Inst. Math. Sci. 26 (1990), 101-183 Zbl0714.32007MR1053910
  10. Paul Gauduchon, Calabi’s extremal Kähler metrics: An elementary introduction 
  11. Paul Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (1997), 257-288 Zbl0876.53015MR1456265
  12. Kunihiko Kodaira, Complex manifolds and deformation of complex structures, (2005), Springer-Verlag, Berlin Zbl1058.32007MR2109686
  13. Claude LeBrun, Santiago R. Simanca, On the Kähler classes of extremal metrics, Geometry and global analysis (Sendai, 1993) (1993), 255-271, Tohoku Univ., Sendai Zbl0921.53032MR1361191
  14. Claude LeBrun, Santiago R. Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal. 4 (1994), 298-336 Zbl0801.53050MR1274118
  15. Claude LeBrun, Santiago R. Simanca, On Kähler surfaces of constant positive scalar curvature, J. Geom. Anal. 5 (1995), 115-127 Zbl0815.53075MR1315659
  16. Mehdi Lejmi, Extremal almost-Kähler metrics, Internat. J. Math. (2010), 1639-1662 Zbl1253.53067MR2747965
  17. Mehdi Lejmi, Stability under deformations of extremal almost-Kähler metrics in dimension 4, Math. Res. Lett. 17 (2010), 601-612 Zbl1223.53057MR2661166
  18. Tian-Jun Li, Symplectic Calabi-Yau surfaces, Handbook of geometric analysis, No. 3 14 (2010), 231-356, Int. Press, Somerville, MA Zbl1216.32016MR2743450
  19. Tian-Jun Li, Adriano Tomassini, Almost Kähler structures on four dimensional unimodular Lie algebras, J. Geom. Phys. 62 (2012), 1714-1731 Zbl1257.53104MR2922031
  20. Paulette Libermann, Sur les connexions hermitiennes, C. R. Acad. Sci. Paris 239 (1954), 1579-1581 Zbl0057.14203MR66733
  21. S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Internat. Math. Res. Notices (1998), 727-733 Zbl0931.58002MR1637093
  22. D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
  23. Yann Rollin, Santiago R. Simanca, Carl Tipler, Deformation of extremal metrics, complex manifolds and the relative Futaki invariant, Math. Z. 273 (2013), 547-568 Zbl1271.32026MR3010175
  24. Yann Rollin, Carl Tipler, Deformations of extremal toric manifolds Zbl1301.32016MR3261726
  25. Gábor Székelyhidi, The Kähler-Ricci flow and K -polystability, Amer. J. Math. 132 (2010), 1077-1090 Zbl1206.53075MR2663648
  26. Q. Tan, H. Wang, Y. Zhang, P. Zhu, Symplectic cohomology and the stability of J -anti-invariant cohomology 
  27. G. Tian, K -stability and Kähler-Einstein metrics 
  28. Luigi Vezzoni, A note on canonical Ricci forms on 2 -step nilmanifolds, Proc. Amer. Math. Soc. 141 (2013), 325-333 Zbl1272.53020MR2988734
  29. Ben Weinkove, The Calabi-Yau equation on almost-Kähler four-manifolds, J. Differential Geom. 76 (2007), 317-349 Zbl1123.32015MR2330417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.