Stability under deformations of Hermite-Einstein almost Kähler metrics
Mehdi Lejmi[1]
- [1] Université Libre de Bruxelles CP218 Département de Mathématiques Boulevard du Triomphe Bruxelles 1050, (Belgique)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 6, page 2251-2263
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLejmi, Mehdi. "Stability under deformations of Hermite-Einstein almost Kähler metrics." Annales de l’institut Fourier 64.6 (2014): 2251-2263. <http://eudml.org/doc/275507>.
@article{Lejmi2014,
abstract = {On a $4$-dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.},
affiliation = {Université Libre de Bruxelles CP218 Département de Mathématiques Boulevard du Triomphe Bruxelles 1050, (Belgique)},
author = {Lejmi, Mehdi},
journal = {Annales de l’institut Fourier},
keywords = {Almost-Kähler geometry; extremal almost-Kähler metrics; constant Hermitian scalar curvature almost-Kähler metrics; almost-Kähler geometry},
language = {eng},
number = {6},
pages = {2251-2263},
publisher = {Association des Annales de l’institut Fourier},
title = {Stability under deformations of Hermite-Einstein almost Kähler metrics},
url = {http://eudml.org/doc/275507},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Lejmi, Mehdi
TI - Stability under deformations of Hermite-Einstein almost Kähler metrics
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2251
EP - 2263
AB - On a $4$-dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.
LA - eng
KW - Almost-Kähler geometry; extremal almost-Kähler metrics; constant Hermitian scalar curvature almost-Kähler metrics; almost-Kähler geometry
UR - http://eudml.org/doc/275507
ER -
References
top- Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, Christina W. Tønnesen-Friedman, Extremal Kähler metrics on projective bundles over a curve, Adv. Math. 227 (2011), 2385-2424 Zbl1232.32011MR2807093
- Vestislav Apostolov, Tedi Drăghici, The curvature and the integrability of almost-Kähler manifolds: a survey, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) 35 (2003), 25-53, Amer. Math. Soc., Providence, RI Zbl1050.53031MR1969266
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry 102 (1982), 259-290, Princeton Univ. Press, Princeton, N.J. Zbl0574.58006MR645743
- Pierre Deligne, Phillip Griffiths, John Morgan, Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274 Zbl0312.55011MR382702
- S. K. Donaldson, Remarks on gauge theory, complex geometry and -manifold topology, Fields Medallists’ lectures 5 (1997), 384-403, World Sci. Publ., River Edge, NJ MR1622931
- Tedi Drăghici, Lecture notes and private communications Zbl0978.53117
- Tedi Drăghici, Tian-Jun Li, Weiyi Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. IMRN (2010), 1-17 Zbl1190.32021MR2576281
- Akira Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics [translation of Sûgaku 42 (1990), no. 3, 231–243; MR1073369 (92b:32032)], Sugaku Expositions 5 (1992), 173-191 Zbl0796.32009MR1073369
- Akira Fujiki, Georg Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics, Publ. Res. Inst. Math. Sci. 26 (1990), 101-183 Zbl0714.32007MR1053910
- Paul Gauduchon, Calabi’s extremal Kähler metrics: An elementary introduction
- Paul Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (1997), 257-288 Zbl0876.53015MR1456265
- Kunihiko Kodaira, Complex manifolds and deformation of complex structures, (2005), Springer-Verlag, Berlin Zbl1058.32007MR2109686
- Claude LeBrun, Santiago R. Simanca, On the Kähler classes of extremal metrics, Geometry and global analysis (Sendai, 1993) (1993), 255-271, Tohoku Univ., Sendai Zbl0921.53032MR1361191
- Claude LeBrun, Santiago R. Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal. 4 (1994), 298-336 Zbl0801.53050MR1274118
- Claude LeBrun, Santiago R. Simanca, On Kähler surfaces of constant positive scalar curvature, J. Geom. Anal. 5 (1995), 115-127 Zbl0815.53075MR1315659
- Mehdi Lejmi, Extremal almost-Kähler metrics, Internat. J. Math. (2010), 1639-1662 Zbl1253.53067MR2747965
- Mehdi Lejmi, Stability under deformations of extremal almost-Kähler metrics in dimension 4, Math. Res. Lett. 17 (2010), 601-612 Zbl1223.53057MR2661166
- Tian-Jun Li, Symplectic Calabi-Yau surfaces, Handbook of geometric analysis, No. 3 14 (2010), 231-356, Int. Press, Somerville, MA Zbl1216.32016MR2743450
- Tian-Jun Li, Adriano Tomassini, Almost Kähler structures on four dimensional unimodular Lie algebras, J. Geom. Phys. 62 (2012), 1714-1731 Zbl1257.53104MR2922031
- Paulette Libermann, Sur les connexions hermitiennes, C. R. Acad. Sci. Paris 239 (1954), 1579-1581 Zbl0057.14203MR66733
- S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Internat. Math. Res. Notices (1998), 727-733 Zbl0931.58002MR1637093
- D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
- Yann Rollin, Santiago R. Simanca, Carl Tipler, Deformation of extremal metrics, complex manifolds and the relative Futaki invariant, Math. Z. 273 (2013), 547-568 Zbl1271.32026MR3010175
- Yann Rollin, Carl Tipler, Deformations of extremal toric manifolds Zbl1301.32016MR3261726
- Gábor Székelyhidi, The Kähler-Ricci flow and -polystability, Amer. J. Math. 132 (2010), 1077-1090 Zbl1206.53075MR2663648
- Q. Tan, H. Wang, Y. Zhang, P. Zhu, Symplectic cohomology and the stability of -anti-invariant cohomology
- G. Tian, -stability and Kähler-Einstein metrics
- Luigi Vezzoni, A note on canonical Ricci forms on -step nilmanifolds, Proc. Amer. Math. Soc. 141 (2013), 325-333 Zbl1272.53020MR2988734
- Ben Weinkove, The Calabi-Yau equation on almost-Kähler four-manifolds, J. Differential Geom. 76 (2007), 317-349 Zbl1123.32015MR2330417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.